Generalised free extensions Algebraic normalisation and dependent types

Nathan Corbyn

University of Oxford

ICFP'22 SRC

Free extensions = Open terms modulo semantics

Free extensions of algebras

Free extensions of algebras e.g., monoids, groups, rings

Free extensions $\begin{tabular}{c} \begin{tabular}{ll} Free extensions \\ \begin{tabular}{c} \begin{tabular$

Free extensions of algebras of generalised algebras e.g., monoids, groups, rings dependently-typed operators

The state of play

Generalised algebra
Categories
Monoidal categories
Cartesian categories
CCCs

Applications
Semantics
Linear type systems
First order PLs
Purely functional PLs

Free extension

√ (Agda)

Todo

Todo

Todo

 $(\mathbb{N},+)$

 $(\mathbb{N},+)$ extended by

 $(\mathbb{N},+)$ extended by $\{x,y,z\}$

$$(\mathbb{N},+)$$
 extended by $\{x,y,z\}$ \subset
Concrete monoid Free variables

Syntax: sums built from a binary operator with unit.

Syntax: sums built from a binary operator with unit.

Syntax: sums built from a binary operator with unit.

Normal forms: bags of free variables and a constant.

 x^2

Normal forms: bags of free variables and a constant.

 x^2

y1

Coproduct with a free algebra!

 $\mathrm{Vect}_{\mathbb{R}}$

 $\underline{Vect}_{\mathbb{R}}$ extended by

$$\begin{array}{ccc} \mathrm{Vect}_{\mathbb{R}} \text{ extended by } \begin{pmatrix} & & \mathtt{f} : \mathbb{R}^2 \to \mathtt{X} \\ \mathtt{X} \, \mathtt{Y} : \mathcal{O} & & \mathtt{g} : \mathtt{X} \to \mathtt{Y} \\ & & \mathtt{h} : \mathtt{Y} \to \mathbb{R}^3 \end{pmatrix} \end{array}$$

Coproducts are too strong!

Coproducts are too strong!

IDEA: Introduce supporting variables

IDEA: Introduce supporting variables and quotient

Generalised universal property

Coproduct with a free algebra

Generalised universal property

New: Push-out along a weakening!

References

Frex: dependently-typed algebraic simplification. Draft, 2022.

John Cartmell.

Generalised algebraic theories and contextual categories.

Annals of Pure and Applied Logic, 32:209–243, 1 1986.

Nathan Corbyn.

Proof synthesis with free extensions in intensional type theory.

Technical report, University of Cambridge, 2021.

MEng Dissertation.

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. Partially-static data as free extension of algebras. *Proc. ACM Program. Lang.*, 2(ICFP), July 2018.