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The state of play

Generalised algebra Applications Free extension
Categories Semantics ✓ (Agda)

Monoidal categories Linear type systems Todo
Cartesian categories First order PLs Todo

CCCs Purely functional PLs Todo
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Generalised universal property

F⟨ Γ ⟩ F⟨ Γ ; ∆ ⟩

A A[σ|∆]

W

Fπ

i∆σ̃

iA

∃!

θ̃

h

⌟

New: Push-out along a weakening!
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