Generalised free extensions

Algebraic normalisation and dependent types

Nathan Corbyn

University of Oxford

ICFP'22 SRC

Background

Background

Open terms
modulo semantics

Free extensions

Background

Open terms
modulo semantics

Free extensions =

Staged meta-programming J

Background

Open terms
modulo semantics

Free extensions =

Staged meta-programming J
Partial evaluation

Background

Open terms
modulo semantics

Free extensions =

Staged meta-programming J

Partial evaluation
Normalisation by evaluation

Background

Open terms
modulo semantics

Free extensions =

Staged meta-programming J
Partial evaluation
Normalisation by evaluation
Proof synthesis

Background

Open terms
modulo semantics

Free extensions

Key applications

Staged meta- programmmg
Partial evaluation -
Normalisation by evaluation -
Proof synthesis -

Contributions

Free extensions
of algebras

Contributions

Free extensions

of algebras
e.g., monoids, groups, rings

Contributions

Free extensions Free extensions

of algebras of generalised algebras
e.g., monoids, groups, rings

Contributions

Free extensions Free extensions

of algebras of generalised algebras
e.g., monoids, groups, rings dependently-typed operators

Contributions

Free extensions Free extensions

of algebras of generalised algebras
e.g., monoids, groups, rings . dependently-typed operators -

The state of play

Generalised algebra
Categories
Monoidal categories
Cartesian categories
CCGCs

Applications
Semantics
Linear type systems
First order PLs
Purely functional PLs

Free extension
v (Agda)
Todo
Todo
Todo

ExAMPLE: Normalising in a commutative monoid

(N, +)

ExAMPLE: Normalising in a commutative monoid

(N, +) extended by

ExAMPLE: Normalising in a commutative monoid

(N, +) extended by {x,y,z}

ExAMPLE: Normalising in a commutative monoid

[H(N, +) extended by {x,y,z} “

Concrete monoid Free variables

ExAMPLE: Normalising in a commutative monoid

Syntax: sums built from a binary operator with unit.

ExAMPLE: Normalising in a commutative monoid

Syntax: sums built from a binary operator with unit.

(x 4120+ (Cy i+ 2z)+03 1+ %)

Lead e ca L2 e ad | B [

1 =]

Free variables

ExAMPLE: Normalising in a commutative monoid

Syntax: sums built from a binary operator with unit.

Concrete values
J L

r==" l'_\L_'| r==" r==-1 l':l/_ﬂ r=="
(xi+12)+(yi+rz)+(03 1+ x1)

Lead e ca L2 e ad | B [

{ =

Free variables

ExAMPLE: Normalising in a commutative monoid

Normal forms: bags of free variables and a constant.

ExAMPLE: Normalising in a commutative monoid

Normal forms: bags of free variables and a constant.

ExAMPLE: Normalising in a commutative monoid

Normal forms: bags of free variables and a constant.

ExAMPLE: Normalising in a commutative monoid

Normal forms: bags of free variables and a constant.

ExAMPLE: Normalising in a commutative monoid

Normal forms: bags of free variables and a constant.

......

ExAMPLE: Normalising in a commutative monoid

Normal forms: bags of free variables and a constant.

......

A universal property

VY

L--4

A universal property

A universal property

r=="

A universal property

r=="

Coproduct with a free algebra!

ExAMPLE: Normalising composites in a category

Vectr

ExAMPLE: Normalising composites in a category

Vecty extended by

ExAMPLE: Normalising composites in a category

f:R?2 X
Vecty extended by | XY: O g:X—>Y
h:Y—R3

ExAMPLE: Normalising composites in a category

f:R? =X
ﬁVectR extended by [XY: O g:X—>Y
Concrete category h:Y—R3

ExAMPLE: Normalising composites in a category

f:R?> X
ﬁVectR extended by [XY: O g:X—>Y

Concrete category Free objects J\\ h:Y—R3

ExAMPLE: Normalising composites in a category

ﬁVectR extended by [XY: O g:X—>Y

Concrete category Free objects J\\ h:Y—R3

Free morphisms j

(f:R?2 X

ExAMPLE: Normalising composites in a category

f:R? =X
ﬁVectR extended by XY: O¢ g XY
Concrete category Free objects — A h:Y—R3

Free morphisms j

Coproducts are too strong!

Coproducts are too strong!

N

Y

Mx
~

g

IDEA: Introduce supporting variables

IDEA: Introduce supporting variables and quotient

Generalised universal property

Coproduct with a free algebra

Generalised universal property

FOT) s FOT Gl Ay

i

~

New: Push-out along a weakening!

References

@ Guillame Allais, Edwin Brady, Nathan Corbyn, Ohad Kammar,
and Jeremy Yallop.
Frex: dependently-typed algebraic simplification.
Draft, 2022.

[@ John Cartmell.
Generalised algebraic theories and contextual categories.
Annals of Pure and Applied Logic, 32:209-243, 1 1986.

@ Nathan Corbyn.
Proof synthesis with free extensions in intensional type theory.
Technical report, University of Cambridge, 2021.
MEng Dissertation.

@ Jeremy Yallop, Tamara von Glehn, and Ohad Kammar.
Partially-static data as free extension of algebras.
Proc. ACM Program. Lang., 2(1CFP), July 2018.

