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Key applications

Staged meta- programmmg
Partial evaluation -
Normalisation by evaluation -
Proof synthesis -
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The state of play

Generalised algebra
Categories
Monoidal categories
Cartesian categories
CCGCs

Applications
Semantics
Linear type systems
First order PLs
Purely functional PLs

Free extension
v (Agda)
Todo
Todo
Todo
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ExAMPLE: Normalising in a commutative monoid

Syntax: sums built from a binary operator with unit.

Concrete values
J L

r==" l'_\L_'| r==" r==-1 l':l/_ﬂ r=="
(xi+12)+(yi+rz)+(03 1+ x1)
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New: Push-out along a weakening!
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