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1 — Introduction
A recently published PhD thesis (Proust, 2017) describes a novel approach to memory man-
agement, as-static-as-possible memory management (ASAP)[1]. Proust’s work is primarily a
theoretical contribution with some initial results from simulation. In his concluding remarks,
Proust states

Future work In order to test asap on real world programs, a full implementation
(rather than the prototype described in Chapter 7) would need to be implemented.

My project is an attempt to carry out this future work. That is, to build a complete machine-
level implementation of ASAP, and to test it on real-world programs.

This chapter presents background material in the wider topic of memory management and
describes the principal contributions of this project. Chapter 2 gives an in-depth exposition
of ASAP and the static analysis techniques on which it is built. Chapter 3 discusses how
these techniques were instantiated in a native-code compiler alongside an extension I made to
Proust’s theory. Finally, chapters 4 and 5 present data collected from code generated by this
compiler and summarise my findings.

1.1 Background

In order for programmers to implement and interact with dynamic data-structures (i.e., linked-
lists and trees), programming languages must allow for the dynamic allocation of memory.
Typically, this is done through a language’s runtime system. Despite enabling the use of
dynamic data-structures, dynamic allocation comes with its own problems. Specifically, as the
memory of a physical system is always finite, a process cannot continue to dynamically allocate
indefinitely without previously allocated memory being reclaimed. However, if memory is
reclaimed while still in use, a wide variety of unintended behaviours can occur. Thus, it
is critical that memory blocks are only reclaimed when a process no longer requires them.
Strategies for determining which memory blocks are safe to reclaim and when to reclaim them
are known collectively as memory-management strategies. Many such strategies exist and are
instantiated in a variety of programming languages, but are not without trade-offs.

The designers of C/C++ opted to place the burden of memory management on the pro-
grammer. That is, the designers exposed primitives (malloc()/free() in C, and new/delete
in C++) for explicitly allocating and deallocating memory. It is then up to the programmer
to use these primitives to correctly reclaim allocated memory. This approach has many perfor-
mance advantages over alternative approaches; however, the misuse of these primitives has been
the root cause of many high-profile software bugs. In summary, the designers of C/C++ traded
safety for performance. However, with a rising demand for correctness in software, language
designers have been pushed to search for safer memory-management strategies which alleviate
this burden from the programmer.

This search led to the development of automatic garbage collectors, which form the basis
of the memory-management strategies of the majority of modern programming languages. Au-
tomatic garbage collectors operate as part of a language’s runtime system. Typically, they are
instantiated as sub-processes which automatically detect unreachable memory blocks (garbage)
and reclaim (collect) them. However, there is a huge body of research concerned with automatic
garbage collection and there are many possible architectures. These include reference counting,
tracing, generational and hybrid schemes.
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1.2. CONTRIBUTION 9

Although automatic collectors are safe (i.e., never deallocate memory that is still in use),
and are generally1 complete (i.e., eventually deallocate all unused memory), they come with
a high performance cost. This cost can include spawning dedicated sub-processes and useful
threads being suspended while large collections occur. In addition to this, garbage collectors
are themselves very complex pieces of software and therefore massively increase the size of a
programming language’s runtime when incorporated. This makes garbage-collected languages
unsuitable for systems programming, particularly for embedded systems or systems where ver-
ifiable real-time behaviour is required.

Rust[3] is a relatively young systems programming language which adopts another alterna-
tive approach. As a systems programming language, one of its key design requirements was to
have a minimal runtime system, thus preventing the use of a large automatic collector. Rather
than leave programmers to manage memory manually (as in C/C++), Rust’s designers applied
a hybrid of type-theoretic techniques (namely, linear typing and region-based programming) to
allow the Rust compiler to statically infer when values are ready to be deallocated and insert
code to do so. However, this type-driven approach to memory management, termed Rust’s
ownership system, is not without cost. It places many restrictions on what can be done with
data, making programming in Rust difficult. In fact, the learning curve associated with the
ownership system is frequently criticised.

ASAP presents a potential solution to this issue. That is, a compiler-driven approach to
memory management that places no restrictions on how data is used in a program. Future
programming languages employing such an approach would be able to avoid the issues cre-
ating Rust’s steep learning curve while, hypothetically, maintaining applicability to systems
programming. Determining if this is truly the case is the primary motivation of this project.

1.2 Contribution

The principal contribution of this work is to provide the first machine-level implementation
of ASAP. This implementation is based on my own extension to Proust’s theoretical work
and supports multiple memory-management strategies, from which one can be selected via a
compiler flag. This has enabled direct performance comparison over a collection of real-world
benchmarks between ASAP and other memory-management techniques for the first time. I find
that, as-is, ASAP is not yet ready for adoption; however, the data I present indicates potential
moving forwards.

1Simple reference counting schemes do not achieve completeness but are safe. Conservative collectors, by
their nature, trade completeness for safety[4].



2 — Preparation
This chapter discusses work done in preparation for the project. As this project is based on re-
cently published research, the vast majority of this work was centred on gaining familiarity with
the source material. However, it also included making several key design decisions regarding
the nature of the compiler.

Section 2.1 discusses design decisions surrounding native-code generation, while section 2.2
describes the reasoning behind my choice of source language and the design of my compiler’s
intermediate representation (IR). Section 2.3 introduces data-flow analysis, a popular static-
analysis technique used heavily by ASAP. A detailed exposition of ASAP itself is then given in
section 2.4. Finally, sections 2.5 and 2.6 give some closing remarks regarding my engineering
methodology and the project’s starting point.

2.1 Generating Native Code

From the outset, I decided that my compiler should target LLVM[2] as a back-end. This
immediately solved the problem of generating native code, as open source tools such as clang
support generating highly-optimised native code from LLVM’s IR. However, there was another
key motivator for this decision. ASAP is a phase in the middle-end of a compiler. This leaves all
code it generates open to standard optimisations (e.g., tail-call elimination). This is something
Proust observes, but does not investigate. Hand-writing such optimisations was clearly beyond
the scope of this project and therefore, in order to investigate the impact of optimisation,
LLVM, with its suite of in-built optimisations, seemed like an obvious choice.

2.2 µ-Mitten

For my source language, I chose to adopt a subset of the Rust programming language. Ac-
knowledging Proust’s IR (µL), I named this µ-Mitten. At this point, one might ask ‘if Rust can
already manage memory statically, what use does a fragment of Rust have for ASAP?’. Rust’s
ownership system enforces immensely strong compile-time invariants in order to permit static
memory management. With this project, I was particularly interested in showing that ASAP
would permit static management of this fragment of Rust, without requiring these invariants.
To do this, I wanted to exhibit correct µ-Mitten programs which are rejected by Rust’s type
system due to simplifications µ-Mitten makes to the programmer’s view of memory. Taking
µ-Mitten to be a syntactic fragment of Rust made this trivial.

A BNF grammar for the abstract syntax of µ-Mitten is given in appendix A. As shown,
the only primitive type supported by µ-Mitten is the unsigned 64-bit integer type u64. All
other types must be defined as a struct (record) or enum (sum-type). µ-Mitten does not
permit higher-order functions, nested matching or mutability (as Rust does), but does support
mutually recursive functions (as µL does not).

Once I had determined my source language, I began designing a suitable IR. The IR I
settled on is a static single assignment (SSA) form; however, as the control flow structures of
µ-Mitten do not permit merging control-flow paths, the IR has no need for the φ-nodes usually
present in SSA IRs. The decision to use SSA was driven by my knowledge that LLVM’s IR is
an SSA form, thus simplifying the task of generating LLVM code from my IR. A BNF grammar
for the IR is given in appendix B.

To illustrate the relationship between the IR and µ-Mitten, a side-by-side comparison of
the two is given in figure 2.1. The IR presented in figure 2.1 was generated by the compiler
from the source code shown; however, temporary names (local indices) have been altered to
aid readability. As can be seen, many of the high-level constructs present in µ-Mitten have
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2.3. DATA-FLOW ANALYSIS 11

been compiled away as syntactic sugar, while local indices have been fixed to all intermediate
results.

fn fib(n: u64) -> u64 {
if n == 0 {

0
} else if n == 1 {

1
} else {

fib(n - 1) + fib(n - 2)
}

}

.fib {
%n <- arg_0
%t0 <- 0
%t1 <- %n == %t0
match %t1 {

0 => {
%t2 <- 1
%t3 <- %n == %t2
match %t3 {

0 => {
%t6 <- %n - %t2
%t7 <- .fib(%t6)
%t8 <- 2
%t9 <- %n - %t8
%t10 <- .fib(%t9)
%t11 <- %t7 + %t10
ret %t11

},
%t5 => {

ret %t2
},

}
},
%t4 => {

ret %t0
},

}
}

Figure 2.1: Comparison between high-level syntax and equivalent IR

2.3 Data-Flow Analysis

Data-flow analysis is a well-known technique in compiler construction for statically inferring
information about the runtime properties of a program[6]. The core idea behind data-flow
analysis is that it is possible to build a set of data-flow equations relating data-flow information
at each program point which are then solved iteratively. I adopt the same terminology as Proust
and refer to the information collected at a given program point as the decoration at that point.

An example of a typical data-flow analysis pass is live-variable analysis (LVA). An LVA
determines the set of variables that may be live at each program point. The decorations of an
LVA are therefore sets of the names of live variables.

To ensure that solutions exist, we require two properties of an analysis. First, its decora-
tions must form a domain under some partial-order v with bottom element ⊥. Second, the
application of its data-flow equations must be monotone with respect to v. That is, assuming
the analysis is captured as the set of data-flow equations ψ, when viewed as an operator, the
application of ψ to any partial solution d satisfies

d v ψ(d)
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Using this property, we can build an ascending chain of partial solutions as follows

⊥ v ψ(⊥) v ψ(ψ(⊥)) · · · v ψn(⊥) v · · · (2.1)

Tarski’s fixed-point theorem tells us that the least solution to ψ is then the least upper-bound
of this chain. This can be computed iteratively by initialising some state to the value of ⊥ and
repeatedly applying ψ; however, this does not guarantee termination.

For termination, we further require that each ascending chain, such as 2.1, is eventually
constant. That is, there exists some N such that for all j ≥ N , ψj(⊥) = ψj+1(⊥). This is
referred to as the ascending-chain condition and is equivalent to asserting the domain of an
analysis is of finite-height[7]. When iterating, we use this fact to inform termination: if an
application of ψ results in no change, we can terminate.

Returning to LVA as an example, it is clear that its decorations form a domain with ⊆
as the order and ∅ as the bottom element. Furthermore, the decoration at a program point π
can never exceed the set of variables in scope at π, hence for any finite program this domain is
finite-height. Thus, termination is guaranteed.

2.3.1 Inter-Procedural Analysis

In its usual form, data-flow analysis is applied to procedures in isolation. This is known as intra-
procedural data-flow analysis. However, a whole-program variant known as inter-procedural
data-flow analysis exists[1]. It is this variant that Proust uses to define ASAP’s data-flow
properties. Rather than simply relating the decorations within a procedure, inter-procedural
analysis also propagates data-flow information between procedures across call and return points.

Inter-procedural data-flow information is carried in two pieces of information computed
for each procedure. The first is a procedure’s summary which carries information from callees
to callers. In the case of an inter-procedural LVA, when analysing a call instruction, we only
need to consider the formal parameters that are live in the callee as live in the caller. Thus the
LVA summary of a procedure would carry information about which of its formal parameters
are live at its entry point. The second is a procedure’s amalgamated call-context which carries
information from callers to callees. Again, taking an LVA as an example, we only need to
consider the return value of a procedure as live if it is live in any of the procedure’s callers.
Thus, the amalgamated LVA-context of a procedure carries information about whether its
return value is live immediately after any of its call points.

2.4 ASAP

In his thesis, Proust develops a theoretical framework within which he defines three data-flow
properties from which heap liveness can be statically approximated. ASAP uses this static
approximation to inform a whole-program transformation which statically inserts code to free
inaccessible heap blocks. Presented here is a brief exposition of the theory developed by Proust
and its instantiation in ASAP.

2.4.1 Paths

Memory management, as described in chapter 1, is concerned with management of data in the
heap. Stack-allocated values are considered as roots from which heap blocks may be accessed;
however, we assume that stack memory will be implicitly managed by a language’s calling
convention and is therefore of no concern.
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For ASAP to reason statically about the structure of data in the heap, it requires an efficient
compile-time abstraction of the heap. To this end, Proust developed his theory of paths, which
I have made an attempt to describe here. I have moved to simplify some of Proust’s formalisms
where appropriate; however, this exposition is substantially the same as Proust’s.

Informally, paths capture the idea of a pattern of access in the heap, originating at a value
of one type and yielding a value of another. Given two µ-Mitten types τ, τ ′ ∈ Type, we can
define the set of paths beginning at a value of type τ and ending at a value of type τ ′ (Pathτ→τ ′)
inductively as follows.

τ = τ ′ (Empty)
ε ∈ Pathτ→τ ′

τ = · · ·+D(τ ′) + · · ·
(Variant)

D ∈ Pathτ→τ ′

p ∈ Pathτ→τ ′′ q ∈ Pathτ ′′→τ ′ (Seq)
p · q ∈ Pathτ→τ ′

p ∈ Pathτ→τ ′ τ = τ ′
(Star)

p∗ ∈ Pathτ→τ ′

τ = {· · · , F : τ ′, · · · }
(Field)

F ∈ Pathτ→τ ′

p ∈ Pathτ→τ ′ q ∈ Pathτ→τ ′ (Alt)
p+ q ∈ Pathτ→τ ′

As can be seen, paths have the same syntax as regular expressions, complete with sequencing (·),
alternation (+), and repetition (∗). In fact, paths can be viewed as regular expressions with the
key difference that rather than the atoms of a path being symbols in an arbitrary alphabet, they
represent atomic de-structurings of structured data. Variant captures projecting a variant
from a sum-type, and Field captures projecting a field from a record. A string in the language
denoted by a path represents a sequence of projections, with the output from each becoming
the input to the next.

Given a heap configuration η ∈ Heap, a stack configuration σ ∈ Stack, a field projection
operator πF : Loc→ Loc and a variant projection operator πD : Loc→ Loc, we can determine
the set of reachable locations denoted by a path when starting from some location l ∈ Loc.
The staged function Z : Loc×Pathτ→τ ′ → Heap×Stack→ P(Loc) performs this operation
and is defined as follows.

Z(l, ε)(η, σ) = {l}

Z(l, F )(η, σ) =

{
∅ if τ ′ = u64

{πF (l)} otherwise

Z(l, D)(η, σ) =

{
∅ if τ ′ = u64

{πD(l)} otherwise

Z(l, p · q)(η, σ) =
⋃
{Z(l′, q)(η, σ) | l′ ∈ Z(l, p)(η, σ)}

Z(l, p+ q)(η, σ) = Z(l, p)(η, σ) ∪ Z(l, q)(η, σ)

Z(l, p∗)(η, σ) =
⋃
n∈ω

Zn where Z0 = {l} and Zn+1 =
⋃
l′∈Zn

Z(l′, p)(η, σ)

Although η and σ are never explicitly referenced in the definition, they are implicit in the
application of πF and πD. Also note that the sets Heap and Stack are infinite, and the subset
of possible configurations at each program point π (Configπ = Heapπ×Stackπ) is, in general,
undecidable. However, given any variable x ∈ Var, we know its stack location σ(x) ∈ Loc.
Thus, given a path p ∈ Pathτ→τ ′ with τ, τ ′ ∈ Type such that Γ ` x : τ , we can compute
Z(σ(x), p) at compile time, and fill in η and σ at runtime when they are known.

To more succinctly refer to these concepts, Proust introduces some terminology and no-
tation. Given types τ, τ ′ ∈ Type and a path p ∈ Pathτ→τ ′ , Proust writes τ.p to stand for τ ′
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(i.e., p can be applied to τ to yield τ ′). Further, given a program variable x ∈ Var such that
Γ ` x : τ , Proust refers to the pair z = (x, p) as a zone, with the set of all zones written as
Zoneτ→τ ′ ⊆ Var × Pathτ→τ ′ . Finally, rather than write Z(σ(x), p) in full, Proust typically
writes Z(x, p) or just Z(z).

The principal use of Z is to define the path subsumption relation �. Strictly speaking, for
each τ, τ ′ ∈ Type, we have a subsumption relation �τ→τ ′⊆ Pathτ→τ ′ ×Pathτ→τ ′ defined over
p, p′ ∈ Pathτ→τ ′ as follows.

p �τ→τ ′ p′ ⇐⇒ ∀l, η, σ. Z(l, p)(η, σ) ⊆ Z(l, p′)(η, σ)

More intuitively, this says that in any runtime configuration, the set of locations reachable by
following any string accepted by p is included within that of p′ (read p′ subsumes p). In general,
the subscript of � is clear from the context and is omitted.

struct Unit {}

struct Cell {
head: u64,
tail: List,

}

enum List {
Nil(Unit),
Cons(Cell),

}

Figure 2.2: µ-Mitten type declaration for a linked list

To give some concrete examples of paths, consider the µ-Mitten type declaration for a
linked list given in figure 2.2 (or alternatively its corresponding type-graph shown in figure
2.3). Possible paths originating from the type List would then include

Cons · head (a list’s immediate head)
(Cons · tail)∗ · Cons (a list’s cons cells)

Cons · head + Cons · tail · Cons · head (the first two elements of a list)
(Cons · tail)∗ · Cons · head (all elements of a list)

(Cons · tail)∗ · Nil (the list’s terminator)

Unit List Cell u64
Nil

Cons

tail

head

Figure 2.3: Type-graph corresponding to the declaration in figure 2.2

2.4.2 Shape, Share and Access

Within this theory of paths, Proust defines three data-flow properties: Shape, Share and Access.
Shape and Share are closely related, interdependent properties, while Access is dependent on
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Shape. As defined by Proust, these properties are three-valued; however, I observed that as
used by ASAP, all three are used as ‘may’ analyses and I treat them exclusively as such.
As described, each of these properties is undecidable but can be safely over-approximated as
described by Proust. It is these approximations that ASAP uses to inform its transformation.

Let π be an arbitrary program point. The Shape decoration at π, Shape(π) ⊆ Zone×Zone,
is a relation over zones such that for all zones (x, p), (y, q) ∈ Zone the following holds.

((x, p), (y, q)) ∈ Shape(π) ⇐⇒ ∃(η, σ) ∈ Configπ. Z(x, p)(η, σ) ∩ Z(y, q)(η, σ) 6= ∅

That is to say, there is some machine configuration possible at π such that the set of locations
reachable from (x, p) and (y, q) overlap (external aliasing). Note that this is only possible for
zones whose destination types are equal. The Shape summary of a function f captures the
possibility of aliasing between the return values of f and its formal parameters at the points
at which f returns. Equally, the amalgamated Shape-context of f captures the possibility of
aliasing between the formal parameters of f at the points at which f is called.

Similarly, the Share decoration at π, Share(π) ⊆ Zone, is a set of zones such that for any
zone (x, p) ∈ Zone the following holds.

(x, p) ∈ Share(π) ⇐⇒ ∃p′, p′′ � p. ∃(η, σ) ∈ Configπ.

p′ 6= p′′ ∧ Z(x, p′)(η, σ) ∩ Z(x, p′′)(η, σ) 6= ∅

Intuitively, this says that there is some aliasing within p (internal aliasing). The Share summary
of a function f captures internal aliasing within its return values, and the amalgamated Share-
context of f captures internal aliasing within its formal parameters. Note that external aliasing
at one program point can imply internal aliasing at another (e.g., when two externally aliasing
zones become fields of the same record) and vice versa, hence the interdependence of Shape and
Share.

The Access decoration at π is simply the set of zones that may be accessed at any program
point π′ reachable from π. Note that explicit access to one zone constitutes an implicit access
to any aliasing zone, thus Access depends on Shape. The amalgamated Access-context of a
function f records access to the return values and formal parameters of f at the points at
which f returns, while the Access summary of f records access to the formal parameters of f
at the entry point of f . This includes all zones present in its amalgamated Access-context.

2.4.3 Scan and Clean

Clean is the name given to ASAP’s whole-program transformation. In its simplest form,
Clean operates by computing two sets at each program point: the matter set, which contains
all zones that must not be deallocated; and the anti-matter set which contains those which may
be deallocated. With these sets computed, Clean generates code implementing the following
series of operations:

1. For each zone in the matter set, mark each reachable location within that zone as ‘safe’.

2. For each zone z in the anti-matter set, for each location l ∈ Z(z)(η, σ) not marked as
‘safe’ or ‘freed’, free l and mark it as ‘freed’.

3. Reset the marks.

Scan is a more primitive compile-time function used as part of this transformation. Its role is
to generate the code required to traverse the memory associated with a given zone and perform
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marking and freeing operations. My implementation of Scan differs greatly from the definition
given by Proust for reasons discussed in chapter 3 and therefore I do not present his definition
here.

Given successive program points π1 and π2, the matter set M and the anti-matter set A
at π2 can be computed as follows.

M = Access(π2)

A = Access(π1) \ (Access(π2) ∪ protected(π1, π2))

Intuitively, this reads as saying that nothing that may be accessed at or after π2 may be
deallocated, while anything that may have been accessed at π1 but not at or after π2 is open
to deallocation. The set protected(π1, π2) is used to exclude zones that have already been
deallocated. For example, if π1 and π2 are the program points immediately before and after
a call instruction, their protected set will include zones that have already been deallocated by
the target of the call.

In practice it is enough to take M as the set of zones accessed at π2 that may alias with
those in the anti-matter set, as they are not at risk fo deallocation otherwise. This is captured
mathematically as follows.

M = {z ∈ Access(π2) | ∃z′ ∈ Zone. (z, z′) ∈ Shape(π2)}
Beyond this trivial optimisation, Proust describes an advanced optimisation for matter and
anti-matter sets he calls trimming ; however, I worked on the basis that all such optimisations
would be ignored until the success criteria of the project had been met. In this case, the
optimisation is left as future work.

2.5 Software Engineering Methodology

I chose to adopt an agile approach to implementation. Key issues and development milestones
were tracked as epics and each two weeks, I self-assigned tasks which I would then review at
the end of the two-week cycle (sprint).

I made use of standard software engineering tools such as Git version control and continuous
integration. I maintained a collection of regression tests which were run on every commit. These
were usually sample programs which could be compiled and run against an expected outcome
or malformed programs that the compiler should correctly reject.

Where appropriate, I made use of test-driven techniques. That is, I would write initially
failing tests and then extend the compiler to support the necessary features to make them pass,
while ensuring no other tests began to fail. However, this was not always possible, particularly
when developing analyses for which reference results could not be computed by hand. In such
cases, I wrote end-to-end tests after the fact (e.g., testing code generated by transformations
dependent on the analyses).

2.6 Starting Point and Legal Concerns

No code included in the final version of this project’s repository was written before the project
was started.

Before starting this project, I had limited interaction with LLVM as part of a small pre-
liminary investigation into this project’s viability. My investigation informed the decision that,
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rather than interact with LLVM’s C API directly, I should use the library Inkwell1, which safely
wraps LLVM’s C API in an ergonomic Rust API. This decision was made to avoid having to
deal with managing the memory associated with LLVM and instead focus on the core ideas
behind the project. Both LLVM and Inkwell are made available under the Apache License 2.02,
and thus use is freely permitted.

1https://github.com/TheDan64/inkwell/
2http://www.apache.org/licenses/

https://github.com/TheDan64/inkwell/
http://www.apache.org/licenses/


3 — Implementation
This chapter describes the implementation work completed as part of the project. For
this project to make a meaningful comparison between ASAP’s performance and that of
other memory-management strategies, it was essential that all factors beyond the memory-
management strategy were tightly controlled. Fortunately, ASAP sits entirely within the
middle-end of a compiler. This means that it is possible to construct a conventional com-
piler pipeline which can then be retroactively extended to support ASAP without modification.
In doing so, we ensure the only differences between code generated with and without ASAP
are attributable to ASAP’s transformations, guaranteeing fairness.

Thus, implementation work was broken down into two key phases. First, I implemented a
‘core’ pipeline, compiling µ-Mitten code into LLVM directly, only supporting memory manage-
ment via the Boehm-Demers-Weiser garbage collector[5]. This work is described in section 3.1.
I then worked on extending this pipeline to support ASAP. Section 3.2 describes my imple-
mentation of a general-purpose data-flow analysis framework, while section 3.3 describes how
this was used to implement ASAP’s analyses specifically. Section 3.4 describes the treatment
of paths and includes an extension I made to Proust’s theory. The implementations of Scan
and Clean are then described in section 3.5. Finally, work done to automate testing and
benchmarking of the project is described in section 3.6.

An overview of the high-level structure of the repository is given in figure 3.1 (red indicates
open source libraries and tools).

syntax

middle::lowering

middle::ty_check

backrtgc, pthread, ... back

clang

middle::analysis

middle::transforms

Core Pipeline

Pipeline Extensions

Runtime Libraries

Source Code

AST

IR

IR

Decorated IR

IR

IR

LLVM IR

Executable

Figure 3.1: Repository overview
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3.1 Core Pipeline

As illustrated, the core pipeline is broken down into four modules: the front-end (src/syntax/);
a lowering module (src/middle/lowering/), which constructs the IR from a given AST; a
simple type system (src/middle/ty_check.rs); and a code generating back-end (src/back/).
Although not the focus of the project, each presented its own engineering challenges and I have
made an effort to highlight the most interesting.

3.1.1 Front-End

When building a front-end for a research language, it is typical to use a parser generator
rather than give a hand implementation. However, as a de-facto parser generator has not
yet emerged in the Rust ecosystem and as the diagnostics produced from such generators
are typically somewhat cryptic, I opted to hand write the compiler’s front-end. The parser
(src/syntax/parse.rs) is a simple recursive-descent parser producing an AST as defined in
src/syntax/ast.rs. The lexer (src/syntax/lex.rs) is similarly conventional and produces
tokens as defined in src/syntax/token.rs.

Although more time-consuming in the short term, the decision to hand write the front-
end proved invaluable in the long term. By having the parser produce spanning information
and passing this to the Rust diagnostic formatting library codespan1, I was able to have the
compiler produce rich diagnostics with minimal effort. Producing the benchmark programs
used for evaluation involved writing several hundred lines of µ-Mitten code and the diagnostics
produced by the compiler were indispensable while doing so. An example is given in figure 3.2
(all formatting is performed by codespan).

error: malformed struct initialiser

+-- src/test/compile-fail/multiple_field_instantiations.mmtn:8:15 ---
|

8 | let foo = Foo { bar: 0, bar: 1 };
| ^^^^^^^^^^^^^^^^^^^^^^ attempted to initialise the same field twice
.

8 | let foo = Foo { bar: 0, bar: 1 };
| - attempted to initialise 'bar' here
.

8 | let foo = Foo { bar: 0, bar: 1 };
| - but it was already initialised here
|

Figure 3.2: A sample diagnostic

3.1.2 Lowering

Once the AST has been built, it must be lowered into the compiler’s IR. Low-
ering consists of two stages: lowering type declarations to build a type session
(src/middle/lowering/ty_ctx.rs) and lowering function declarations to build IR function
definitions (src/middle/lowering/ctx.rs). The type session carries information about the
structures of types and is essential throughout type-checking, analysis and code generation. Its
underlying data-structure (src/ty.rs) takes care to structurally unique function types and the
u64 type, while handling record and sum-types nominally.

1https://github.com/brendanzab/codespan

https://github.com/brendanzab/codespan
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In order for the compiler to efficiently reference components of the IR throughout analysis
and transformation, the in-memory representation of the IR (/src/middle/ir.rs) makes heavy
use of indices in place of names used in the AST. For example, rather than referring the fields
of a record by name, the IR refers to them using an integral index. As the IR introduces indices
for a variety of purposes, it was not reasonable to deal with them as pure integers. Thus, I
employed a Rust design pattern: opaque index types.

First, a trait2 is introduced (as shown in figure 3.3), which can be implemented by a type
to indicate that it is an index type.

pub trait Idx: 'static + Copy + Eq + Hash + fmt::Debug {
fn index(&self) -> usize;

fn new(index: usize) -> Self;
}

Figure 3.3: The Idx trait (src/common/idx.rs)

Using this trait, it is possible to define a wrapper around the standard library’s vector
type, Vec, as shown in figure 3.4. All of the methods supported by Vec can be implemented
by this opaque wrapper. However, this is done in such a way that only its type parameter can
be used to index the underlying vector. The result is an efficient type-safe map data-structure.
As a concrete example, an implementation of IdxVec::push is given in figure 3.5.

#[derive(Clone, PartialEq, Eq, Hash)]
pub struct IdxVec<I, T> {

raw: Vec<T>,
// Rust does not permit type parameters to go unused,
// so we use a marker to ignore the index type
_phantom: PhantomData<fn(&I)>,

}

Figure 3.4: The IdxVec data structure (src/common/idx_vec.rs)

impl<I, T> IdxVec<I, T>
where

I: Idx,
{

pub fn push(&mut self, elem: T) -> I {
let index = self.raw.len();
self.raw.push(elem);
I::new(index)

}
}

Figure 3.5: IdxVec::push (src/common/idx_vec.rs)

As Rust statically resolves calls to trait methods, after inlining, use of this pattern compiles
away to uses of usize and the Vec type. This means that performance is preserved while
allowing Rust’s type system to catch a variety of common mistakes.

2Traits are similar to interfaces or type classes in other languages.
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3.1.3 Type-Checking

The next phase in the core pipeline is type-checking. The implementation (src/middle/ty_-
check.rs) checks definitions recursively using the type session built by the lowering phase.

Rather than operating over the front-end’s AST, the type-checker works purely with the
IR. A consequence of this is that for meaningful diagnostics to be generated, the lowering phase
must carry forward spanning information generated by the front-end into the IR. However, there
is great incentive to type-check the IR rather than the AST. As ASAP’s cleaning transformation
is type-safe, by type-checking the IR, the type-checker doubles as a general-purpose IR verifier
which can be applied to transformation results as shown in figure 3.1.

3.1.4 Generating LLVM IR

Due to the similarities between µ-Mitten’s IR and LLVM IR, the back-end for the core pipeline
was also straightforward to implement.

LLVM IR is strongly typed. Thus, it was necessary to determine how µ-Mitten types should
be represented in LLVM. The following definition of compile : Type → LLVM captures the
approach I took. i64 denotes LLVM’s 64-bit signed integer type; braces are used in indicate
structures; and the post-fix type-constructor * builds the type of a pointer to its operand type.

compile(u64 ) = i64
compile(D1(τ1) + · · ·+Dn(τn)) = { i64, i64 }*

compile({F1 : τ1 + · · ·+ Fn : τn}) = { compile(τ1), · · · , compile(τn) }*

Note that the representation of sum-types is independent of the types participating in the sum.
As each µ-Mitten value is, as in Java, either a primitive or a reference, values are guaranteed to
have a fixed 64-bit width. Thus, the representation of any given sum-type contains one i64 to
hold its discriminant and another which can be cast to a pointer to the appropriate LLVM type
when projecting one of its variants. Often, it is necessary to know the LLVM representation of
an un-boxed value of a given type τ ∈ Type, which I will write as compileU(τ).

Let-bindings and the binary operators supported by µ-Mitten have direct analogues in
LLVM and therefore compiling these was trivial. However, when initialising a record, memory
must first be allocated and the values of its fields must be copied individually. Similarly, memory
must be allocated for sum-types; however, in this case, the sum’s body must be explicitly cast to
an i64 to satisfy LLVM’s type system. When using Boehm-Demers-Weiser, memory is allocated
using the allocation function GC_malloc() provided by libgc, while libc’s malloc() is used
otherwise. Throughout this description, I will use allocfn to denote an arbitrary allocation
function and sizeof : Type→ ω to denote the compile-time function computing the un-boxed
size of the LLVM representation of a given type in bytes.

Given a record initialisation of the form

x <- τ {F1:f1, · · · , Fn:fn,}

the compiler will generate the LLVM IR shown in figure 3.6. Similarly, given a variant initiali-
sation of the form

x <- τ::D(d)

the compiler will generate the LLVM IR shown in figure 3.7. Destructuring in match cases is
achieved using LLVM’s switch construction. As µ-Mitten does not support nested matching,
no back-tracking is required. When matching the value of a word, the switch construct is
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applied to the word directly. When matching variants, the switch construct is instead applied
to the variant’s discriminant. In this case, code to cast the projected body of the variant to
the appropriate LLVM type must be generated at the head of each of the basic-blocks targeted
by the switch. Finally, when destructuring records, an unconditional switch is used (LLVM
optimises this to straight line code). Code is then generated in the switch’s branch target to
project the appropriate fields.

%alloc = tail call i8* @allocfn(i32 sizeof (τ))
x = bitcast i8* %alloc to compile(τ)

%field_1_ptr = getelementptr compileU (τ), compile(τ) x, i32 0, i32 0
store compile(τ.F1) f1, compile(τ.F1)* %field_1_ptr
...
%field_n_ptr = getelementptr compileU (τ), compile(τ) x, i32 0, i32 n
store compile(τ.Fn) fn, compile(τ.Fn)* %field_n_ptr

Figure 3.6: Expansion of record initialisation into LLVM

%alloc = tail call i8* @allocfn(i32 sizeof (τ))
x = bitcast i8* %alloc to compile(τ)

%discriminant_ptr = getelementptr compileU (τ), compile(τ) x, i32 0, i32 0
store i64 i, i64* %discriminant_ptr
%body_ptr = getelementptr compileU (τ), compile(τ) x, i32 0, i32 1
%cast_body = ptrtoint compile(τ.Di) d to i64
store i64 %cast_body, i64* %body_ptr

Figure 3.7: Expansion of variant initialisation into LLVM

As a concluding example, the LLVM generated from the IR shown in figure 2.1 is shown
in figure 3.8. Again, temporary names and labels have been altered to improve readability. As
illustrated in figure 3.1, once generated, output LLVM IR is passed onto clang which functions
as both an LLVM IR compiler and a linker, thus completing the core pipeline.

3.2 Analysis Framework

Once the core pipeline was complete, I began working on the pipeline extensions implement-
ing ASAP. As ASAP relies on not one but three data-flow properties, I chose to implement
a reusable framework within which each of the analyses could be implemented. This had an-
other important benefit. As the results from ASAP’s analyses are often extremely complex,
testing them directly was impractical. However, by implementing a simpler analysis within the
framework, the bulk of the analysis code could be tested without needing to verify results from
ASAP’s analyses.

At the core of the analysis framework is the DataFlow trait, given in appendix C. Each type
implementing this trait must specify the direction of analysis (either forwards, or backwards).
The types to be used for the decorations, summaries and amalgamated call-contexts of the
analysis must also be specified along with how to initialise them. Next, implementers are
required to specify how data flows through entry points, expressions, match cases and return
points. The methods providing this information are given a reference to the analysis engine from
which they are called such that they can query information about the procedure under analysis
and update contexts and summaries of other procedures. Additionally, each is provided with
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define i64 @fib(i64) {
entry:

%t1 = icmp eq i64 %0, 0
%t1_cast = zext i1 %t1 to i64
switch i64 %t1_cast, label %outer_then [

i64 0, label %outer_else
]

outer_else:
%t3 = icmp eq i64 %0, 1
%t3_cast = zext i1 %t3 to i64
switch i64 %t3_cast, label %inner_then [

i64 0, label %inner_else
]

inner_else:
%t6 = sub i64 %0, 1
%t7 = call i64 @fib(i64 %t6)
%t9 = sub i64 %0, 2
%t10 = call i64 @fib(i64 %t9)
%t11 = add i64 %t7, %t10
ret i64 %t11

inner_then:
ret i64 1

outer_then:
ret i64 0

}

Figure 3.8: LLVM IR generated from the IR given in figure 2.1
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the location of the program point being analysed to enable cross-referencing between analysis
passes. Finally, the data-flow confluence operator must be specified. This operator describes
how to treat data-flow decorations at merging program points. It is only necessary to define this
operation for backwards analyses as the structure of the analysis IR ensures there are no merging
program points on forwards paths through the control-flow graph. Using this trait, I developed
a simple inter-procedural LVA (src/middle/analysis/passes/lva.rs), some sample results
of which are given in figure 3.9. As with figure 2.1, I have made some subtle changes to the
formatting to aid readability.

// (context) true
.fib { // (summary) {arg_0}

%n <- arg_0 // {%n}
%t0 <- 0 // {%n, %t0}
%t1 <- %n == %t0 // {%n, %t1}
match %t1 {

0 => { // {%n}
%t2 <- 1 // {%n, %t2}
%t3 <- %n == %t2 // {%n, %t3}
match %t3 {

0 => { // {%n}
%t6 <- %n - %t2 // {%n, %t6}
%t7 <- .0(%t6, ) // {%n, %t7}
%t8 <- 2 // {%n, %t8, %t7}
%t9 <- %n - %t8 // {%t9, %t7}
%t10 <- .0(%t9, ) // {%t10, %t7}
%t11 <- %t7 + %t10 // {%t11}
ret %11

},
%t5 => { // {%t2}

ret %t2
},

}
},
%t4 => { // {%t0}

ret %t0
},

}
}

Figure 3.9: An LVA of the function shown in figure 2.1

The framework built around this trait is split into three components: the analysis runtime,
the analysis engine, and the local analysis engine. At the highest level, the analysis runtime
is responsible for handling invocations of analysis passes and caching results. As the data-flow
trait prevents implementers from holding state, the analysis runtime can cache results on a
per-type basis. This cache is used to make the point at which analyses are run transparent.
That is, whenever a piece of code requires the results of an analysis pass, it asks the analysis
runtime as if it were for the first time. If the analysis results have not yet been generated,
the runtime spins up an analysis engine to compute them, otherwise, the cached results are
returned immediately. A concrete illustration is given in figure 3.10.

Below the analysis runtime sits the analysis engine, overseeing the inter-procedural com-
ponent of analyses. When first instantiated, the analysis engine will initialise empty contexts
and summaries for all defined procedures and build a queue of procedures to be analysed. So
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let runtime = middle::analysis::runtime(/* ... */ );
// LVA has not yet been computed so this call will trigger the analysis
let lva = runtime.pass::<Lva>();
// Now the LVA is cached, all future calls will return the cached result
// Thus, no analysis will be triggered by this call
let lva = runtime.pass::<Lva>();

Figure 3.10: An example interaction with the analysis runtime

long as this queue is non-empty, the analysis engine will instantiate a local analysis engine
for the procedure at the front of the queue. It is this local engine that is responsible for the
intra-procedural component of the analysis.

Throughout analysis, the summaries and contexts of procedures may be updated. If a
procedure’s summary changes, the decorations computed for each of its callers are invalidated
and must be recomputed. Similarly, if a procedure’s context changes, its own decorations are
invalidated and must be recomputed. The methods for updating contexts and summaries lie
within the analysis engine. This ensures it can enqueue procedures for re-analysis as and when
these changes occur. To guarantee analysis reaches a fixed point, procedures are only enqueued
for re-analysis when there is a genuine change due to an update, rather than whenever an
update occurs. It is this approach to inter-procedural analysis that allows the compiler to
fix-point data-flow information for mutually recursive procedures, something which Proust’s
implementation was unable to do.

In normal circumstances, data-flow analysis engines will only record data-flow information
at the entry and exit of basic blocks in the control-flow graph. The reasoning behind this is that
storing data-flow information on a per-instruction basis is too memory intensive, particularly
considering that the per-instruction information can be efficiently recovered from the block-
level information. However, in the case of ASAP’s analyses, I quickly found that the overhead
associated with re-computing the per-instruction information could not be justified in terms of
the memory saving and thus all data-flow information is recorded.

As with the inter-procedural analysis, the local analysis engine maintains a queue of basic
blocks to be analysed. So long as this queue is non-empty, the data-flow information for
the block at the front of the queue is computed. This is done by one of two methods: one
corresponding to a forwards analysis pass and one corresponding to a backwards pass. These
methods are largely symmetric with the key differences being in their treatment of entry blocks,
return points and the order in which blocks are enqueued. Note that the local analysis engine
will never recompute the data-flow information for a basic-block more than once in a single
analysis of a procedure, as the IR ensures there are no cycles in the control-flow graph. That is,
it is not necessary to fix-point the analysis information for basic blocks, only procedure contexts
and summaries.

Finally, an instance of the local analysis engine can provide references to its parent analysis
engine and further to the overarching analysis runtime. This allows analysis passes to request
the results from other passes and update the contexts and summaries of other procedures. The
one caveat is that there can be no cycles in the dependence graph for analyses. The reason
for this is the analysis runtime waits for a pass to be completed before caching its results.
Any cycle in the dependence graph will, therefore, cause unbound instantiations of the analysis
engine and result in a crash.
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3.3 Shape, Share and Access

As described in chapter 2, ASAP’s analyses are interdependent; figure 3.11 illustrates the
nature of this interdependence as a dependency graph. This presents an obvious problem: the
dependency graph is not acyclic, as required by my analysis framework. However, this issue
is easily circumvented by realising that any cyclic dependency graph can be reduced to an
acyclic one by replacing each cycle with a pseudo-node constructed by taking the product of
the analyses in that cycle. This idea is also illustrated in figure 3.11. For ASAP’s case, this
means that rather than build three analysis passes, I planned to build two: Access, as before;
and ImpliedAccess, the product of Shape and Share.

Access Shape Share

ImpliedAccessAccess

Figure 3.11: Dependency graph of ASAP’s analyses

Proust observes that so long as values are used linearly, the Share property of a program
will be void and therefore has no impact on its Shape property. This observation led me, at first,
to a decision to implement the Shape component of ImpliedAccess before its Share component.
However, ultimately I realised that an implementation of Share was simply not necessary to
benchmark the algorithms I was interested in, as each of them treats its data linearly. Thus,
in the final repository, only the Shape component of ImpliedAccess is implemented although it
could easily be extended to further support Share.

Although the decorations for Access and Shape are defined mathematically as sets and
relations of zones respectively, I built specialised data-structures to carry this information.
For Access, I developed a data-structure ZoneSet (src/middle/analysis/zones.rs) repre-
senting a set of mutually incompatible zones rooted at a single local index. When a new
zone is added to the set, I check for a compatible zone. If one is found, I merge the com-
patible zone with the new zone. Otherwise, the new zone’s path is appended to a vec-
tor of paths underpinning the ZoneSet. The AccessDecoration data-structure defined in
src/middle/analysis/passes/access.rs wraps this data-structure to track the accessed
ZoneSet for each local index.

An efficient representation of Shape’s decorations was significantly harder to find. The
data-structure I settled on maps pairs of local indices and paths to maps from local indices
to paths. This allows for questions such as ‘which zones alias with this zone?’ and ‘do these
two zones alias?’ to be answered efficiently; however, the implementation of the data-structure
(src/middle/analysis/passes/implied.rs) is somewhat non-trivial.

The data-structures used to carry the summaries and contexts of Shape and Access were
derived from those used to carry their decorations by making the data-structures generic in the
index type they carry data for.

Having defined the data-structures used to carry the decorations, contexts and summaries
of Shape and Access, building the analyses within my framework was straightforward. It was
simply a case of translating Proust’s mathematical definitions into code. However, all of this
work depended on an implementation of paths. This was a major hurdle. In fact, efficient
treatment of paths is something Proust’s thesis highlights as an area for future investigation.
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3.4 Implementing Paths

Paths are, as mentioned, regular expressions extended to support the subsumption operator �.
This gives the impression that an efficient treatment of paths would be to compile them into
regular expressions and use an off-the-shelf regular expression library to implement operations
over them. The problem with this approach becomes apparent when considering the role paths
play in Proust’s data-flow analyses.

fn len(xs: List) -> u64 {
match xs {

List::Nil(_) => 0,
List::Cons(cell) => match cell {

Cell { head: _, tail: xs } => 1 + len(xs),
},

}
}

Figure 3.12: Function to compute the length of a list

Consider the function len shown in figure 3.12, computing the length of a linked list.
It is clear that given a list l, evaluating len(l) will involve traversing all of the cons cells
constituting the memory representation of l (the spine of l). Thus, we should expect that the
path representing the spine of the list

(Cons · tail)∗ · Cons (3.1)

would appear in the Access summary computed for len. However, recall that the solutions to
data-flow equations are computed iteratively. If we assume that the summary is initially empty,
after a single iteration, the summary will contain Cons ; after two iterations, the summary will
contain Cons + Cons · tail · Cons ; and, in general, after n iterations the summary will contain
the path ∑n

i=0

[
(Cons · tail)i · Cons

]
Although in the infinite case, this is equivalent to 3.1, for any finite n, this is not so. In essence,
we have found an infinite ascending chain and therefore violated the ascending-chain condition
described in chapter 2.

For the more theoretically inclined reader, it suffices to say that although for any
τ, τ ′ ∈ Type, Pathτ→τ ′ ordered by � forms a meet-semilattice (with meets given by +),
this semilattice is not of finite height. Thus, when using this semilattice to build partial solu-
tions for our analyses, we cannot expect to converge on a least upper bound in a finite number
of iterations.

Proust’s solution to this problem is to constrain the set of paths he is interested in for
each type to what he termed the wild path set for that type3. For each τ ∈ Type, he gave
a construction Wild(τ) with the property that for any finite program, Wild(τ) is also finite,
yet collectively its paths would explore all of the heap blocks reachable from a value of type τ .
Given any τ, τ ′ ∈ Type, by considering only Pathτ→τ ′ ∩Wild(τ) ordered by �, Proust obtains
a finite meet-semilattice and thus guarantees his analyses reach a fixed-point in a finite number
of iterations. At the cost of some information that can be gained from straight line code4, this

3This is an instantiation of a more general technique used in abstract interpretation known as widening.
4See p. 59 of Proust’s thesis for a discussion.
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is a neat solution to the problem in theory, but one that presents some significant challenges
when put into practice.

The difficulty arises when attempting to compute the meet of a set of paths in these
constrained semilattices. As wild paths sets are, in general, not closed under +, the + operator
no longer serves to compute the meet of two paths. Proust terms the operator computing the
meet in one of his semilattices as the widening operator for that semilattice; however, his thesis
proposes no algorithm for computing the application of such an operator. A naïve solution
would be to compute Wild(τ) for every program type τ and discover meets by brute force
(potentially with some form of memoisation to improve performance). This is an approach
I put considerable effort into realising, but quickly discovered, is implausible for all but the
smallest of programs5. In the end, I moved to develop an alternative method for constraining
the domain of the analyses which I call path compaction.

3.4.1 Compact Paths

Presented here is the notion of compact paths and their applicability to data-flow analysis.
Compact paths are my own extension to Proust’s theory of paths. To the best of my knowledge,
they are a novel concept and constitute a key contribution of this dissertation.

To gain a complete understanding of compact paths, it is important to understand their
origin, which lies in automata theory. It is a well-known result from Kleene that the set of
regular expressions (RegExp) and that of deterministic finite automata (DFA) are equivalent.
That is to say, given any r ∈ RegExp there exists an automaton M(r) ∈ DFA such that
L(r) = L(M(r)) (i.e., r andM(r) denote the same language). In general, there are many such
automata and I will use [[M(r)]] to refer to them collectively.

As paths are, at their core, regular expressions, Kleene’s theorem allows us to further view
them as DFAs. Figure 3.13 illustrates a DFA that is equivalent to the path Cons + Cons ·
tail · Cons (the start state is indicated by an arrow and the accepting states are indicated by
a double outline).

q0 q1 q2 q3
Cons tail Cons

Figure 3.13: M(Cons + Cons · tail · Cons)

Although they are in essence regular expressions, paths contain a significant amount of
information about the structure of the types in a program which is not captured by DFAs.
Specifically, as each atom in a path p ∈ Pathτ→τ ′ corresponds to the de-structuring of a value
of one type to yield a value of another, we can usefully annotate each state inM(p) with the
type of value that will be obtained when that state is reached.

Given a path p ∈ Pathτ→τ ′ and its corresponding DFAM(p) = (Q, s,F ,∆), we define the
type-annotated DFA M+(p) ∈ DFA+ to be the 5-tuple (Q, s,F ,∆, γ) where γ : Q → Type
is a type-annotation function satisfying

γ(s) = τ

∀q ∈ F . γ(q) = τ ′

∀q, q′ ∈ Q. (q
α−→ q′ =⇒ γ(q).α = γ(q′))

As such,M+ : Path→ DFA+ represents an extension of Kleene’s theorem between paths and
type-annotated DFAs. The result of applying this new mapping to the path Cons +Cons · tail ·
Cons is shown in figure 3.14 (annotations are written above the states).

5Wild path sets grow faster than exponentially in the size of the program type-graph.
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q0

List

q1

Cell

q2

List

q3

Cell

Cons tail Cons

Figure 3.14: M+(Cons + Cons · tail · Cons)

Using this definition ofM+, we are now able to give a formal definition of compact paths.
A path p is compact if and only if there exists an annotated DFAm = (Q, s,F ,∆, γ) ∈ [[M+(p)]]
such that γ is an injection. More intuitively, this means that each τ ∈ Type has at most one
representative state in m. I will write Compactτ→τ ′ ⊆ Pathτ→τ ′ for the set of compact paths
between τ, τ ′ ∈ Type.

Compact paths have several properties that make them amenable for use in data-flow
analysis. Firstly, for any finite program, given program types τ, τ ′, we have that Compactτ→τ ′
is finite. This is because for any compact path p ∈ Compactτ→τ ′ , its annotated DFAM+(p)
can be seen as a proper sub-graph of the program’s type-graph of which there are finitely many
(as the program type-graph is finite).

In fact, this correspondence between compact paths and sub-graphs of program type-graphs
yields an efficient model of compact paths, as it is only necessary to track the subset of the
type-graph’s edges that appear in the path. Within this model, the path-compaction operator
b·cτ→τ ′ : Pathτ→τ ′ → Compactτ→τ ′ can be defined as

bεcτ→τ ′ = ∅

bF cτ→τ ′ = {τ F−→ τ ′}
bDcτ→τ ′ = {τ D−→ τ ′}
bp · qcτ→τ ′ = bpcτ→τ.p ∪ bqcτ.p→τ ′
bp+ qcτ→τ ′ = bpcτ→τ ′ ∪ bqcτ→τ ′
bp∗cτ→τ ′ = bpcτ→τ ′

with the property that for any path p ∈ Pathτ→τ ′ , p � bpcτ→τ ′ . As is shown, the behaviour
of this operator in all cases is either trivial or a simple application of set union. This makes
implementation simple. The annotated DFA corresponding to the result of applying the path
compaction operator to our example path Cons + Cons · tail ·Cons can be seen in figure 3.15.

q0

List

q1

CellCons

tail

Figure 3.15: M+(bCons + Cons · tail · ConscList→Cons)

Furthermore, as every compact path is still a path, given two compact paths p, q ∈
Compactτ→τ ′ , we have that the path p + q subsumes both p and q. As the compaction of
this path bp + qcτ→τ ′ subsumes p + q, by the transitivity of �, we also have that bp + qcτ→τ ′
subsumes both p and q. This gives an efficient way to compute meets of compact paths. Finally,
recall that Compactτ→τ ′ is finite for any finite program, and thus Compactτ→τ ′ ordered by �
forms a finite meet-semilattice within which we can efficiently build solutions to our data-flow
equations.
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3.4.2 Practical Implications

What is really happening here is that any time a path visits a type more than once, the
compaction of that path jumps to the conclusion that that type could be visited an infinite
number of times. This is a safe over-approximation of the original path; however, it has the
obvious drawback that the precision of our analyses is reduced. This is because compaction
throws away information that could have been gathered from straight-line code.

fn tail(xs: List) -> List {
match xs {

List::Nil(unit) => List::Nil(unit),
List::Cons(cell) => match cell {

Cell { head: _, tail: xs } => xs,
},

}
}

Figure 3.16: Function to compute the tail of a list

For example, consider the function tail, shown in figure 3.16, computing the tail of a list.
Under Proust’s wild path sets, the Access summary of tail would contain the path

Cons · tail
However, after compaction, the summary would instead contain the path

(Cons · tail)∗

Even though tail is non-recursive, compaction has discarded that information and assumed
that every element in the list may be accessed.

To minimise complexity, in my implementation, all paths are compacted. As my bench-
marks are recursive, I believe this will have had minimal impact. However, as a potential
solution, I believe it would be possible to develop a hybrid between Proust’s symbolic treat-
ment of paths and path compaction to minimise the impact on precision. While fix-pointing
analyses, paths would be compacted, but for straight-line code, paths would be treated sym-
bolically. Hypothetically, this would preserve precision in straight-line code while maintaining
the benefits of path compaction for fix-pointing but is left as future work.

3.4.3 Concrete Implementation

To capture the model of compact paths as sub-graphs of the program type-graph, I used the
definition given in figure 3.17, taken from src/middle/analysis/paths.rs.

At the lowest level, the Atom type represents an edge label, as either a field projection or
a variant projection. The Edge type then describes complete edges, with a source type (src),
destination type (dest) and a label (atom). Finally, the Path type represents a compact path
between its source type (src) and its destination type (dest). The set of edges making up the
path is represented using the Rust standard library’s hash-set implementation, which allows
for path operations to be efficiently implemented using standard library functions.

As path operators are only defined given that some requirements on the source and desti-
nation types of the operand paths are met, it would have been desirable to have the compiler
check that these requirements are met statically. However, as Rust is not dependently typed,
this was simply not possible. Instead, as a correct implementation of ASAP’s analyses should
never violate the type restrictions on path operations, I made heavy use of debug assertions
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#[derive(Copy, Clone, PartialEq, Eq, Hash)]
enum Atom {

Field(ty::FieldIdx),
Variant(ty::VariantIdx),

}

#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct Edge {

src: ty::Ty,
dest: ty::Ty,
atom: Atom,

}

#[derive(Clone, PartialEq, Eq)]
pub struct Path {

pub src: ty::Ty,
pub dest: ty::Ty,
edges: HashSet<Edge>,

}

Figure 3.17: The data-structure representing compact paths

to enforce restrictions at runtime. These assertions are disabled in release builds and therefore
have no impact on the compiler’s performance, but were invaluable while developing ASAP’s
analyses. An example of how debug assertions were used while implementing path union is
given in figure 3.18.

impl Path {
pub fn or(&self, other: &Path) -> Path {

debug_assert!(self.compatible_with(other));
Path {

src: self.src,
dest: self.dest,
edges: self.union_edges(other),

}
}

}

Figure 3.18: Path union using debug assertions to enforce type restrictions

A drawback of this approach to implementing paths is that the Rust standard library’s
HashSet type cannot itself be collected in a hash-set, as it does not implement the required
Hash trait. As the Path type contains a HashSet, it too cannot implement Hash. As such, when
dealing with sets of paths, it is necessary to use a set implementation which does not make use
of hashing. This also carries over to situations using maps with paths as keys: it is necessary to
use a map implementation which does not hash its keys. Such implementations are not typically
required or desired, so I was forced to develop these myself. My implementations of vector-
backed sets and maps are given in src/common/set.rs and src/common/map.rs respectively.
They support the majority of the public API of their hash-based alternatives in the standard
library and therefore serve as drop-in replacements for working with paths.
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3.5 Scan and Clean

At this point, I began implementing Clean. The approach I took was broken down into two
key components: implementing the transformation (code generation) and animating its output
(runtime support).

3.5.1 Code Generation

The first step towards generating cleaning code was to extend the IR’s instruction set with
primitives for marking, un-marking and freeing pointers. I also included a ‘reset’ instruction
which could be invoked after a cleaning pass to tidy up any state required during cleaning.
This is illustrated in figure 3.19.

〈instruction〉 ::= 〈local-idx 〉 ‘<-’ 〈expr〉
| ‘free’ 〈type-idx 〉 〈local-idx 〉
| ‘mark’ 〈type-idx 〉 〈local-idx 〉
| ‘unmark’ 〈type-idx 〉 〈local-idx 〉
| ‘reset’

Figure 3.19: Extensions to the IR

With these IR extensions I began my implementation of the compile-time function Scan.
As mentioned, the implementation differs significantly from Proust’s definition. The reason for
this is path compaction. In Proust’s thesis, Scan is defined by structural recursion on the
syntax of paths; however, the model of paths used by my implementation does not allow for
this. Instead, when generating scanning code for a given path, my implementation generates
a single scanning function for each reachable type in that path. For each outgoing edge from
these types, code is generated to perform the corresponding projection and call the scanning
function for the resulting type. The exception is the u64 type which is silently ignored.

Scanning functions are generated to perform one of three roles: marking, un-marking and
freeing. I refer to this as a function’s scanning mode. When generating scanning functions
to free a zone, a free instruction is inserted at the entry to the scanning function for the
destination type of the zone’s path. On the other hand, when marking and un-marking a zone,
a mark or unmark instruction is inserted at the entry of each scanning function.

When Clean makes use of Scan to scan a particular zone, a call to the scanning function
generated for the zone’s source type is inserted. In cases where the zone to be scanned is
empty, no functions are generated and a single instruction corresponding to the scanning mode
is inserted instead.

My implementation of Clean directly generates code at each program point implementing
the series of operations described in chapter 2. However, naïvely generating fresh scanning code
at each program point is highly likely to result in duplication of code. Thus, the data-structure
overseeing Clean ensures that scanning functions are unique up to the zone they scan, the
type they scan from and their scanning mode. However, this uniquing is purely nominal. That
is to say, given code defining two distinct types with precisely the same structure, the scanning
code generated for one cannot be used for the other as this would violate the type-safety of
Clean.

3.5.2 Runtime Support

Although Proust’s definition Clean makes use of two sets of marks, he suggests inlining mark-
bits in the memory representations of heap objects to avoid incurring the cost of managing
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these sets explicitly. In this implementation, the marks applied to the matter set are inlined,
while the anti-matter mark-set is managed by a runtime system.

In order to inline mark-bits and support the new IR primitives, it was necessary to extend
the back-end. First, I altered type compilation under ASAP to add a mark bit to each record and
sum-type. This was simply a case of adding a field with type i1 to their LLVM representations.
Given a type τ ∈ Type, I will use compileM(τ) to denote its LLVM representation with the
additional mark-bit added, and markptr τ (x) to denote a pointer to the mark-field of a variable
x of type τ . As words are not freed, none of the primitives are defined when τ = u64 . Thus, I
only consider cases where τ is a constructed type.

After extending the compilation of types, I implemented the primitives themselves. When
compiled into LLVM, the mark and unmark primitives operate as expected, writing the mark
field of their operand as shown in figures 3.20 and 3.21.

%mark_ptr = markptr τ (x)
store i1 true, i1* %mark_ptr ; set mark-bit to 1

Figure 3.20: Expansion of mark into LLVM

%mark_ptr = markptr τ (x)
store i1 false, i1* %mark_ptr ; set mark-bit to 0

Figure 3.21: Expansion of unmark into LLVM

On the other hand, the free and reset primitives expand to calls into a runtime system as
shown in figures 3.22 and 3.23. Observe that the expansion of free will only invoke the runtime
if the mark-bit of its operand is zero.

%mark_ptr = markptr τ (x)
%mark = load i1, i1* %mark_ptr ; load the mark
br i1 %mark, label %merge, label %free ; if unmarked free, otherwise skip

free:
%raw = bitcast compileM (τ) x to i8* ; bit-cast x to a byte pointer
call void @mitten_free(i8* %raw) ; invoke the runtime
br label %merge ; continue

merge:

Figure 3.22: Expansion of free into LLVM

The runtime system was also developed as part of this project. When developing the
runtime system, I worked to keep it as small as possible. The source code for the runtime
is given in appendix D, it uses advanced features of Rust in order to safely interface with µ-
Mitten executables as a dynamically-linked C library. As can be seen, the final implementation
of mitten_free does not free memory directly, but adds the target pointer to a hash-set
of pointers waiting to be freed. At each call to mitten_reset(), the hash-set is drained
(cleared, while retaining the underlying memory allocation) and each pointer it contained is
freed. By collecting pointers in a hash-set, we avoid double-frees which could otherwise occur
when aliasing zones are scanned in a single cleaning pass. Furthermore, if memory is directly
freed while scanning, the un-marking phase of a cleaning pass can dereference freed data,
resulting in undefined behaviour. Thus all deallocations are pushed to the end of the cleaning
pass in its call to mitten_reset().
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call void @mitten_reset() ; invoke the runtime

Figure 3.23: Expansion of reset into LLVM

3.6 Testing and Benchmarking Tools

As mentioned in chapter 2, I made use of regression testing throughout development. In
order to minimise the overheads associated with adding new tests, I built a testing framework
(src/tools/mitten-test/). Once pointed at a directory, it recursively discovers all .mmtn
files and compiles and executes each of them. In order to make assertions about code it is
running, the framework interprets the first comment of each .mmtn file it finds as a JSON
object representing a test configuration. This configuration might assert that the test should
compile and run to produce an expected value as shown in figure 3.24, or that compilation fails
due to an expected error as shown in figure 3.25.

// { "compile_status": "ok", "expectation": 42 }

fn add(a: u64, b: u64) -> u64 {
a + b

}

fn main() -> u64 {
add(20, 22)

}

Figure 3.24: An example of a passing test

// { "compile_status": "fail" }

struct Foo {
bar: u64,

}

fn main() -> u64 {
let foo = Foo { bar: 0, bar: 1 };
0

}

Figure 3.25: An example of a test with an expected failure

When beginning data-collection, I took a similar approach to implementing a benchmarking
tool (src/tools/mitten-bench/). The most important requirement of the benchmarking tool
was that it should be able to execute the same benchmark at a variety of problem sizes.
However, as µ-Mitten code does not accept arguments from the command line, there appeared
to be no way to achieve this without duplicating test code. This was not a satisfactory solution
for the number of problem sizes I hoped to test. Instead, I extended the compiler to support
a macro, env, which expands to the value of a given environment variable at compile time.
An example of how this is used is given in figure 3.26. Benchmarks make use of this macro
to pick up on changes to one of a number of environment variables set by the benchmarking
tool. The benchmarking tool recompiles code as it varies these environment variables enabling
measurement of the impact of executing the same code at a variety of problem sizes.
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// { "compile_status": "ok", "expectation": 100, "env": { "MITTEN_ENV": "100" } }

fn main() -> u64 {
env!("MITTEN_ENV")

}

Figure 3.26: A test invoking the env macro

3.7 Summary

To summarise, this chapter has described the implementation of the two key components of the
compiler: its core pipeline, implementing compilation to LLVM; and the pipeline extensions,
implementing ASAP’s analyses and transformations. It also introduced path compaction, my
own extension to Proust’s theory, guaranteeing ASAP’s analyses terminate efficiently. Finally,
it discussed the automation of testing and data-collection, the results from which are discussed
in the next chapter.



4 — Evaluation
This chapter evaluates ASAP in three aspects: its impact on execution, discussed in section
4.1; its compile-time overheads, described in section 4.2; and finally, its usability, analysed in
section 4.3. Throughout sections 4.1 and 4.2, ASAP is compared to the Boehm-Demers-Weiser
garbage collector. As a control, I also present data for when no memory-management strategy
is used (i.e., situations when all memory is leaked). Section 4.4 summarises my findings.

The data presented in this chapter was collected over a number of days using a hosted
virtual machine. The majority of the data collection was repeated 100 times to allow for
estimates of error to be computed; however, the data regarding heap and cache performance
could only be collected once due to high instrumentation overheads.

4.1 Impact on Execution

This section investigates ASAP’s impact on execution. This investigation is not limited to
absolute execution time, but also studies factors such as memory footprint and cache perfor-
mance. I discuss my findings in the context of predictions made by Proust about the possible
performance characteristics of ASAP when compared to other memory-management strategies.

The data I collected is centred around three µ-Mitten benchmarks: list_len.mmtn, which
builds a list of length n and computes its length; depth_first.mmtn, which builds a binary
tree with n internal nodes and traverses it depth first; and quick_sort.mmtn, which builds a
list of length n containing the numbers 0 to n − 1 in descending order, and sorts it using a
quick sort into ascending order1. In each case, n is the problem size.

In real world programs, it is rare for a single algorithm to be run in isolation. Thus, in
order to better capture how ASAP and Boehm-Demers-Weiser impact long-running processes
with many isolated invocations of an algorithm, each benchmark iterates its algorithm i times,
where i is determined by the environment variable MITTEN_ITERS. All of the data presented
here was collected with i equal to 1000. The benchmark skeleton which performs this iteration
is shown in figure 4.1.

fn kernel() -> u64 {
// The actual algorithm would be invoked here...

}

fn iter(n: u64, acc: u64) -> u64 {
if n == 0 {

acc
} else {

kernel() & iter(n - 1, acc)
}

}

fn main() -> u64 {
iter(env!("MITTEN_ITERS"), 1)

}

Figure 4.1: The skeleton of each benchmark

It is important to note that although my implementation of ASAP produced correct clean-
ing code for each of my regression tests, list_len.mmtn and depth_first.mmtn, the more

1Note that this is always the O(n2) worst case for quick sort, but is of great interest due to the memory
allocated for temporary lists during append operations.

36
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complex quick_sort.mmtn contains a residual memory leak. I also planned to gather data
from a fourth benchmark, breadth_first.mmtn, a breadth-first tree traversal; however, its
generated cleaning code contains a double-free which I was unable to repair. The consequence
of this is that various aspects of the data pertaining to quick_sort.mmtn are attributable to
its memory leak and therefore do not coincide with those of the data collected for the other
two benchmarks. I have highlighted situations where I believe this to be the case.

4.1.1 Execution Times

Figure 4.2 shows how execution time per iteration grows with problem size for each strategy on
each benchmark. Dashed lines are used to indicate executions when LLVM’s optimisations have
been disabled, while solid lines indicate executions compiled with LLVM’s highest optimisation
level. The 95% confidence interval for plotted means was computed using a T-distribution;
however, the resulting error bars are too small to be observed on the plot.

Figure 4.2: Time per iteration by problem size by strategy for each benchmark

It is clear from this data that application of my implementation of ASAP incurs a high
cost when compared to both the control strategy and Boehm-Demers-Weiser. However, the
data also highlights some other interesting facts about ASAP.

As mentioned, Proust observes that ASAP’s position in the compiler pipeline leaves its
generated code open to optimisation by later stages. The huge impact disabling optimisations
has on ASAP’s performance shown in figure 4.2 indicates that scanning code heavily benefits
from standard optimisations. This is in contrast to Boehm-Demers-Weiser and the control
strategy, which benefited minimally by comparison.

From this data-set alone, it is impossible to determine what portion of this is due to the
relatively naïve approach I took to generating it, or ASAP’s amenability to optimisation. I
see it as likely that the impact of LLVM’s optimisations on better-optimised scanning code
is reduced; however, I believe that even with better-optimised scanning code, programs using
ASAP would remain more amenable to optimisation than those using Boehm-Demers-Weiser.

4.1.2 Heap Usage

In embedded systems, available memory is often heavily constrained and therefore for ASAP to
have applicability to systems programming languages as discussed in chapter 1, it is important
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that its generated code does not introduce space overheads.
To obtain heap performance data, I made use of a tool know as Massif, which belongs to

the wider memory instrumentation framework Valgrind[8]. Figure 4.3 gives the maximum heap
size in bytes observed by Massif at a range of problem sizes broken down by strategy for each
benchmark.

Figure 4.3: Max heap size by problem size by strategy for each benchmark

In the cases of list_len.mmtn and depth_first.mmtn, ASAP is able to outperform
Boehm-Demers-Weiser at all problem sizes, while outperforming the control strategy at larger
problem sizes. As my ASAP implementation makes use of the Rust runtime and Boehm-
Demers-Weiser manages its own internal heap, both pre-emptively allocate pools of memory
using mmap(). In these examples, this pre-allocated memory was never exceeded and hence
there was no observed growth in the heap. As for the case of quick_sort.mmtn, I believe that
the majority of the upwards trend in maximum heap size under ASAP is due to its residual
memory leak, rather than ASAP itself. It is regrettable that the other benchmarks do not
exhibit the effect of a single iteration exceeding the size of the pre-allocated memory pool;
however, as previously mentioned, collecting this data was too computationally expensive for
me to trial larger problem sizes.

4.1.3 Cache Miss Rates

Another matter of great interest is ASAP’s impact on the cache performance of programs.
Modern CPU architectures are aggressively optimised to exploit spatial and temporal locality.
A feature of modern high-performance CPU architectures is a hierarchy of cache memories,
designed to mask the huge latency associated with access to main memory. CPU caches are
extremely high performance, but are heavily constrained in their capacity, meaning only a
fraction of the memory associated with a process can be cached at any one time. When a
process attempts to access a word which is not currently held in the cache, a cache miss occurs
and the CPU is forced to wait for the word to be returned from main memory. This is hugely
expensive and thus, there is great incentive to minimise cache miss rates.

Mark-and-sweep garbage collectors struggle here, as they regularly interrupt process exe-
cution to scan vast chunks of the heap. This will often result in many cache misses, as only a
fragment of the heap will be cached at the point of interruption. Furthermore, active process
data is likely to be evicted from cache causing further cache misses when execution is restarted.
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Proust argues that ASAP’s tendency to scan recently accessed data will result in a significantly
lower data-cache miss rate when compared to other memory-management strategies. This is
something I was keen to investigate.

To obtain cache performance data, I made use of another component of Valgrind:
Cachegrind. Cachegrind emulates a two-level cache hierarchy with a combined L2 cache, but
separate L1 instruction and data caches. From Cachegrind’s output, I as able to compute both
instruction and data-cache miss rates. Figure 4.4 illustrates the observed data-cache miss rate
at a variety of problem sizes, broken down by strategy for each benchmark, and figure 4.5
illustrates the same for the instruction-cache miss rate.

Figure 4.4: Data-cache miss rates by problem size by strategy for each benchmark

Figure 4.5: Instruction-cache miss rates by problem size by strategy for each benchmark

Given the disparity in execution times between ASAP and the other approaches, a valid
criticism of figures 4.4 and 4.5 is that they may mask the absolute number of cache misses
caused by ASAP behind a huge volume of memory traffic. In actual fact, this is not the case.
Even the absolute number of cache misses caused by ASAP is very competitive. Figure 4.6
gives the absolute number of observed data-cache misses for the same data set, and figure 4.7
gives that of instruction-cache misses.
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Figure 4.6: Data-cache misses by problem size by strategy for each benchmark

Figure 4.7: Instruction-cache misses by problem size by strategy for each benchmark
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As can be seen, with the exception of the quick-sort benchmark (likely due to its residual
memory leak), ASAP generates significantly less data-cache misses than Boehm-Demers-Weiser
and the control strategy. Furthermore, it has a comparable number of instruction-cache misses
with the control strategy while significantly outperforming Boehm-Demers-Weiser.

I believe this data constitutes strong evidence to support of Proust’s prediction that ASAP
would reduce data-cache misses when compared with mark-and-sweep garbage collectors. As
for the improvement in instruction-cache performance compared with Boehm-Demers-Weiser,
I believe that this is attributable to the fact that ASAP’s cleaning code is contained almost
entirely within its binary. In these examples, the binaries are small enough that they can fit
within the instruction-cache in their entirety. This means there are at most as many instruction-
cache misses as words in the binary, hence the independence of instruction-cache misses on
problem size observed in 4.5. In contrast, Boehm-Demers-Weiser will load and evict large
quantities of library code throughout execution resulting in the observed increase in instruction-
cache misses with problem size.

4.2 Compile-Time Overheads

Beyond ASAP’s impact on execution, it is important to consider its impact on compile-time
factors such as binary size and compilation time. As ASAP relies on several static-analysis
passes and code generation, there is a risk that ASAP’s impact on compilation is too great for
it to be practical in any industrial programming language. In this section I investigate whether
this is really the case.

4.2.1 Compilation Time

Figure 4.8 shows the mean compilation time for each benchmark broken down by strategy over
a sample of 100 compilations. The error bars indicate the 95% confidence interval for the mean
as computed from a T-distribution.

Figure 4.8: Compile time by strategy by benchmark

Although clearly noticeable, the impact of ASAP on compilation of these benchmarks was
significantly less than I was anticipating given the amount of work done by its analyses. Quick
sort, the benchmark with the most complex analysis results, suffered the most and this leads
me to question how ASAP’s impact scales when compared with other techniques. Proust’s
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thesis sheds some light on the scalability of ASAP’s analyses in isolation; however, does not
provide similar data for untransformed code.

4.2.2 Binary Size

Figure 4.9 shows the output binary size for each benchmark broken down by strategy. As
compilation is deterministic, there are no errors in these measurements.

Figure 4.9: Output binary size by strategy by benchmark

Again, although noticeable, the growth in binary size due to ASAP is clearly within reason.
From this data, it is impossible to determine how well ASAP’s impact on binary size scales to
larger programs; however, with more careful optimisation of scanning code such as structural
uniquing and trimming, I believe further reductions in the impact are possible. For these
benchmarks specifically, ASAP’s impact on binary size is clearly offset by its huge reduction in
instruction-cache misses when compared with Boehm-Demers-Weiser.

4.3 Usability

Finally, this section studies ASAP’s usability when compared with Rust’s ownership system.
Specifically, I illustrate that ASAP is successful in eliminating the need for Rust’s compile-
time invariants and programmer annotations, while retaining the ability to manage memory
statically. To this end, I present examples of µ-Mitten code taken from quick_sort.mmtn
with adaptations to make them Rust compatible. These adaptations are highlighted in orange
to draw attention to the simplifications ASAP was able to make to µ-Mitten’s type system,
without introducing the need for an automatic garbage collector.

The first key simplification, is to permit recursive types without explicit indirection. By
default, Rust assumes that all records are un-boxed, and therefore in order to declare recursive
types, programmers are required to explicitly mark fields as boxed. Figure 4.10 gives the
µ-Mitten type declaration for a list altered in this way.

Secondly, when initialising these explicitly boxed fields, Rust requires the programmer to
explicitly instantiate a box within which to move data. Figure 4.11 illustrates this in an adapted
µ-Mitten function that builds a list of a given length.

Finally, when working with data structures containing boxed data, unless the data is to be
consumed, Rust requires explicit borrowing (reference taking) of the contents of the box. The
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struct Unit {}

struct Cell {
head: u64,
tail: Box< List > ,

}

enum List {
Nil(Unit),
Cons(Cell),

}

Figure 4.10: Recursive type requiring explicit indirection

fn list_with_len(n: u64) -> List {
match n {

0 => List::Nil(Unit {}),
_ => List::Cons(Cell {

head: n,
tail: Box::new( list_with_len(n - 1) ) ,

}),
}

}

Figure 4.11: Explicit boxing when initialising boxed fields

noise introduced by this borrowing is highlighted in figure 4.12. The code written in grey is
required to cast the Rust bool type to the µ-Mitten u64 type and should be ignored.

Overall, µ-Mitten’s use of ASAP enables it to separate the programmer from explicit
notions of memory, while still managing allocations statically. In contrast, Rust gives explicit
fine-grained control over the memory representation of data at the cost of introducing noise
into the code as shown in figures 4.10, 4.11 and 4.12.

4.4 Summary

To summarise, my findings show a somewhat disappointing slowdown associated with appli-
cation of ASAP. However, ASAP was also shown to have clear benefits in terms of reducing
the memory footprint of processes and reducing cache miss rates over Boehm-Demers-Weiser.
Furthermore, it is not susceptible to any kind of stop-the-world latency, while remaining fully
automatic. The compile-time impact of ASAP was negligible for the benchmarks I consid-
ered, while it yielded a clear reduction in noise when instantiated in a Rust-like language when
compared to Rust’s ownership system.
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fn sorted(list: & List) -> u64 {
match list {

List::Nil(_) => 1,
List::Cons(cell) => match cell {

Cell {
head: head,
tail: tail,

} => match &** tail {
List::Nil(_) => 1,
List::Cons(cell) => match cell {

Cell {
head: other_head,
tail: _,

} => (head <= & other_head) as u64 & sorted( & tail),
},

},
},

}
}

Figure 4.12: Explicit address-taking and dereferencing when working with boxed data



5 — Conclusion
The project was a success. It implemented Proust’s ASAP memory-management strategy in
a native-code compiler and enabled the first real-world evaluation of ASAP’s performance.
Technically, the success criteria included implementing Proust’s three data-flow analyses, but
the data-flow analysis Share was not needed for this evaluation. As such, the project met its
success criteria. Moreover, I extended the project by comparing ASAP’s usability with that
of Rust’s ownership system and by developing Proust’s theory to reduce the complexity of his
analyses.

In terms of performance, implementing Proust’s ideas in µ-Mitten showed that ASAP does
not match its initial promise. In particular, section 4.1.1 illustrates a super-linear slowdown
with increase in problem size. From this, I would argue that, as-is, ASAP is not ready for
real-world adoption. However, the avenues of investigation highlighted in section 5.2 might
begin to close this gap.

ASAP clearly has potential. Section 4.2 demonstrates, somewhat surprisingly, negligi-
ble compile-time costs across the set of benchmarks tested. Furthermore, ASAP exhibited
impressive reductions in space overheads and cache miss-rates when compared to the Boehm-
Demers-Weiser conservative garbage collector. By giving the first machine-level implementation
of ASAP, this project has opened the door for further investigation into possible optimisations
and improvements. Thus, I believe that this project has had extremely positive research out-
comes.

5.1 Lessons Learned

Projects based on recent research work will inevitably run into issues with the source material.
This is particularly the case when dealing with work that has not been widely peer-reviewed,
such as Proust’s thesis. There were many points during development where I felt my un-
derstanding was at its limit, or that a particular theoretical challenge was insurmountable.
Spending more time absorbing the source material to avoid this kind of disruption would have
smoothed development significantly.

The other main challenge of the project was the sheer amount of time spent debugging
memory corruptions. Although this is expected in a project of this nature, I did not anticipate
quite how time-consuming this would be. I believe a good portion of this time could have
been saved if I had invested time earlier in the project to ensure that my compiler could emit
debugging symbols for its generated LLVM IR. However, by the end of the project it was
too late to consider. Were I to attempt this project again, I would focus on my approach to
debugging as a central issue.

5.2 Future Work

It would be interesting to see an instantiation of ASAP in a more fully-featured language, such
as one supporting parametric polymorphism and mutability. Proust’s thesis gives indications of
how his analyses may be extended to support such language features, but implementing them
was beyond the scope of this project.

In terms of reducing ASAP’s costs, further investigation into the impact of better-optimised
scanning code is necessary. For example, the hybrid between Proust’s paths and compact
paths suggested in chapter 3 may well lead to higher-performance straight-line code. Other
possibilities include the aggressive inlining of scanning functions, further trimming of matter
and anti-matter sets and implementing new optimisation passes driven by Proust’s analyses
such as removing unaccessed allocations entirely.
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A — µ-Mitten
〈type〉 ::= ‘u64’ | 〈ident〉

〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘^’ | ‘<<’ | ‘>>’ | ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈field〉 ::= 〈ident〉 ‘:’ 〈ident〉 ‘,’

〈arg〉 ::= 〈expr〉 ‘,’

〈expr〉 ::= 〈literal〉
| 〈ident〉
| ‘!’ 〈expr〉
| 〈expr〉 〈op〉 〈expr〉
| 〈ident〉 ‘(’ 〈arg〉* ‘)’
| 〈type〉 ‘{’ 〈field〉* ‘}’
| 〈type〉 ‘::’ 〈ident〉 ‘(’ 〈expr〉 ‘)’

〈pattern〉 ::= 〈literal〉
| 〈ident〉
| 〈type〉 ‘{’ 〈field〉* ‘}’
| 〈type〉 ‘::’ 〈ident〉 ‘(’ 〈ident〉 ‘)’

〈case〉 ::= 〈pattern〉 ‘=>’ 〈term〉 ‘,’

〈term〉 ::= ‘let’ 〈ident〉 ‘=’ 〈expr〉 ‘;’ 〈term〉
| ‘let’ 〈ident〉 ‘:’ 〈type〉 ‘=’ 〈expr〉 ‘;’ 〈term〉
| ‘if’ 〈expr〉 ‘{’ 〈term〉 ‘}’ ‘else’ ‘{’ 〈term〉 ‘}’
| ‘match’ 〈expr〉 ‘{’ 〈case〉* ‘}’
| 〈expr〉

〈binding〉 ::= 〈ident〉 ‘:’ 〈type〉 ‘,’

〈variant〉 ::= 〈ident〉 ‘(’ 〈type〉 ‘)’ ‘,’

〈decl〉 ::= ‘fn’ 〈ident〉 ‘(’ 〈binding〉* ‘)’ ‘->’ 〈type〉 ‘{’ 〈term〉 ‘}’
| ‘struct’ 〈ident〉 ‘{’ 〈binding〉* ‘}’
| ‘enum’ 〈ident〉 ‘{’ 〈variant〉* ‘}’

〈program〉 ::= 〈decl〉*
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B — The Analysis IR
〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘^’ | ‘<<’ | ‘>>’ | ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈arg〉 ::= 〈local-idx 〉 ‘,’

〈field〉 ::= 〈field-idx 〉 ‘:’ 〈local-idx 〉 ‘,’

〈expr〉 ::= 〈literal〉
| 〈local-idx 〉
| ‘!’ 〈local-idx 〉
| 〈local-idx 〉 〈op〉 〈local-idx 〉
| 〈def-idx 〉 ‘(’ 〈arg〉* ‘)’
| 〈type-idx 〉 ‘{’ 〈field〉* ‘}’
| 〈type-idx 〉 ‘::’ 〈variant-idx 〉 ‘(’ 〈local-idx 〉 ‘)’

〈pattern〉 ::= 〈literal〉
| 〈local-idx 〉
| 〈type-idx 〉 ‘{’ 〈field〉* ‘}’
| 〈type-idx 〉 ‘::’ 〈variant-idx 〉 ‘(’ 〈local-idx 〉 ‘)’

〈case〉 ::= 〈pattern〉 ‘=>’ ‘{’ 〈block〉 ‘}’ ‘,’

〈instruction〉 ::= 〈local-idx 〉 ‘<-’ 〈expr〉

〈terminator〉 ::= ‘ret’ 〈local-idx 〉
| ‘match’ 〈local-idx 〉 ‘{’ 〈case〉* ‘}’

〈block〉 ::= 〈instruction〉* 〈terminator〉

〈param〉 ::= 〈local-idx 〉 ‘<-’ 〈param-idx 〉

〈entry〉 ::= 〈param〉* 〈block〉

〈def 〉 ::= 〈def-idx 〉 ‘{’ 〈entry〉 ‘}’

〈program〉 ::= 〈def 〉*
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C — The DataFlow Trait
pub trait DataFlow: Sized + 'static {

const DIR: DataFlowDir;

type Context: Eq + fmt::Debug;
type Summary: Eq + fmt::Debug;
type Decoration: Clone + fmt::Debug;

fn empty_context() -> Self::Context;

fn empty_summary() -> Self::Summary;

fn empty_decoration() -> Self::Decoration;

fn entry(
engine: &LocalAnalysisEngine<'_, '_, Self>,
loc: AnalysisLoc,
dec: &mut Self::Decoration,

);

fn expr(
engine: &LocalAnalysisEngine<'_, '_, Self>,
loc: AnalysisLoc,
dec: &mut Self::Decoration,
binding: ir::LocalIdx,
expr: &ir::ExprKind,

);

fn pattern(
engine: &LocalAnalysisEngine<'_, '_, Self>,
loc: AnalysisLoc,
dec: &mut Self::Decoration,
source: ir::LocalIdx,
pattern: &ir::PatternKind,

);

fn ret(
engine: &LocalAnalysisEngine<'_, '_, Self>,
loc: AnalysisLoc,
dec: &mut Self::Decoration,
idx: ir::LocalIdx,

);

fn conflate(
engine: &LocalAnalysisEngine<'_, '_, Self>,
loc: AnalysisLoc,
decorations: Vec<Self::Decoration>,

) -> Self::Decoration;
}
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D — The Runtime System
#![crate_type = "cdylib"]

use libc::c_void;
use std::cell::RefCell;
use std::collections::HashSet;

thread_local! {
static ANTI_MARKS: RefCell<HashSet<*mut c_void>> = RefCell::new(HashSet::new());

}

#[no_mangle]
pub extern "C" fn mitten_free(ptr: *mut c_void) {

ANTI_MARKS.with(|marks| marks.borrow_mut().insert(ptr));
}

#[no_mangle]
pub unsafe extern "C" fn mitten_reset() {

ANTI_MARKS.with(|marks| {
for ptr in marks.borrow_mut().drain() {

libc::free(ptr);
}

})
}
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Computer Science Part II Project Proposal

Practical Static Memory Management

Introduction and Description of the Work

It is well known that memory management is a necessary component of many programs, as
without it, dynamically allocated memory would be left unreclaimed and cause a resource
deficit, eventually resulting in a crash.

In his thesis, Proust describes a novel approach to memory management wherein the
compiler is responsible for statically inferring which heap blocks are safe to be freed, and
inserting instructions to free them [1]. This is as opposed to other approaches taken by
major programming languages such as placing the burden on the programmer to manually
free allocated memory (as in C/C++); requiring an automatic garbage collector to run as
part of a runtime system (as in Java); or requiring a linear/region-based type system (as
in Rust).

Proust’s approach hinges on an abstraction of a heap access he refers to as a path.
Using this abstraction, he defines three whole-program data-flow analyses (Shape, Share,
and Access), which collectively gather enough information to statically infer which heap
blocks are candidates for deallocation, and which are required to remain live.

Data-flow analysis is a family of techniques for statically approximating information
about the runtime behaviour of programs by collecting information available at each pro-
gram point and propagating this to surrounding program points [2]. Whole-program data-
flow analysis, specifically, considers whole programs (rather than isolated procedures) and
propagates data-flow information across call points (i.e. inter-procedurally).

Based on the results of his analyses, Proust describes when and how code should
be generated to descend into the heap along candidate paths in order to deallocate unused
heap blocks in a mark-and-sweep style operation.

Unfortunately, the real-world performance characteristics of Proust’s approach are
as yet unknown, as his work only went so far as to verify the approach’s correctness in
simulation. Thus, this project aims to investigate the practical viability of the approach by
building the technology into a real compiler in such a way that permits empirical evaluation
of its performance relative to alternative approaches on a real machine and to carry out
such evaluation.

Starting Point

Rust appears to be a sound choice for the implementation language as it is well suited to
compiler implementation and I have prior familiarity with it from a number of contributions



I have made to the language’s compiler. I have also had limited interaction with the LLVM
compiler infrastructure as part of a small preliminary investigation into the viability of this
project. Furthermore, prior to starting, I have studied Proust’s thesis to the extent that
I understand what needs to be done to provide a complete implementation of his work, but
have made no attempt to implement a data-flow analysis framework or any of his analyses.

Resources Required

The key libraries I intend to work with (the LLVM compiler infrastructure and the Boehm-
Demers-Weiser GC) are open-source and widely distributed.

As for the development platform of my project, I intend to use my own laptop (quad-
core Intel Core i7 CPU 1.8GHz; 8GB RAM; 256GB SSD). All source code (including the
Dissertation LATEX source) will be kept under git(1) version control, and back-ups will be
pushed to GitHub and an external hard drive on a daily basis. Should my laptop become
incapacitated, any remaining work can be completed on the Computing Service’s MCS, as
I have verified it has all necessary software pre-installed or readily available.

Substance and Structure of the Project

In order to carry out a detailed empirical analysis of Proust’s approach, it will be neces-
sary to implement a compiler that takes source programs written in a language similar to
that used by Proust and produces executable binaries which either manage memory as
described by Proust, or link into an automatic collector as part of the runtime system,
based on a compiler flag.

The idea is that it will then be possible to directly compare the performance charac-
teristics of the binaries produced with and without applying Proust’s approach, as this
will be the only differing stage in the compilation pipeline. With intent to draw prac-
tically applicable conclusions from this analysis, a collection of standard algorithms and
data structures will be used as benchmarks, but determining which and how many is left
as part of the project.

As a starting point, I only intend to profile against the Boehm-Demers-Weiser
GC as it represents a state of the art implementation of a popular class of garbage collec-
tors, namely, conservative garbage collectors [3]. However, there is no reason that further
collectors could not be trialed as extensions to the project.

Proust states that his approach is complete. That is, all eligible heap blocks will
be freed before program termination. Thus, any failure to implement Proust’s approach
correctly should result in detectable memory leakage. Hence, the use of the Boehm-
Demers-Weiser GC also enables the evaluation of the correctness of any implementation
of Proust’s approach, as it doubles as a leak detector and will therefore catch any such
incorrectness.

Finally, in order to realistically profile the performance of the approach on a real
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machine, it is necessary to generate efficient machine code targeting that machine. Partic-
ularly, as Proust’s approach inserts code before compiler optimisation, freeing code may
be optimised in each location it is inserted. The performance impact of this is something
that I am also very interested in investigating. It is important to note here that the nature
of Proust’s approach means that it does not require any form of special support from the
compiler back-end, and hence any existing compiler back-end may be chosen as a target
for the implementation. Thus, I am proposing to make use of the LLVM compiler infras-
tructure as the back-end for the implementation, as it is open-source, well maintained and
known to generate efficient machine code[4]. Furthermore, LLVM supports several levels of
optimisation, each of which could be trialed in order to determine if compiler optimisations
are indeed impactful in improving the performance of deallocations.

From this, it follows that the project should have the following main sections:

1. Selecting and implementing the data structures necessary to represent the IR over
which the analyses will be carried out.

2. A small front-end targeting the IR, to simplify the process of testing. This will
include a simple lexer and parser capable of preparing an AST; a simple type-checker
and a collection of de-sugaring operations if determined to be necessary.

3. A data flow analysis framework for the IR. The framework should support decorating
program points with information gathered from Proust’s 3vl analyses, and thus,
implementations of data structures for 3vl sets and relations will also be required.

4. Implementing the three analyses defined in Proust’s thesis (Shape, Share and Ac-
cess) using the constructed analysis framework. This will require a representation of
the paths over which he defines his analyses, and implementations of the operations
he defines over them.

5. Implementing a code generation pass that generates freeing code based on the re-
sults of the analyses, or inserts instructions required to drive the Boehm-Demers-
Weiser GC.

6. A back-end targeting the LLVM IR.

7. Writing a collection of representative programs to profile with and without the stat-
ically generated freeing code.

8. Profiling the executions of these programs against a constructed set of benchmarks.

9. Writing the Dissertation.

Success Criteria

The following should be achieved:
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• Implement each of the three data flow analyses defined in Proust’s thesis

• Implement the transformation that inserts cleaning code based on the results of these
analyses

• Output LLVM IR corresponding to the chosen internal IR

• Perform a direct performance comparison between code generated using Proust’s
approach, and code generated to use the Boehm-Demers-Weiser garbage collector

Possible Extensions

The IR over which Proust defines his analyses is simple in nature and does not support
a variety of higher-level features that are commonplace in modern high-level programming
languages. Examples include parametric polymorphism, mutually recursive functions, and
mutability. However, towards the end of his thesis, he describes modifications to the
analyses which permit such features. Thus, potential extensions to the project include
extending the implementation to cover these modifications.

Furthermore, additional garbage collectors and memory management strategies could
be compared in order to extend the empirical evaluation. For example, the OCaml garbage
collector differs greatly in design from the Boehm-Demers-Weiser collector, and in so
doing, avoids some of the pitfalls of conservative garbage collection [5]. Thus, making it
an excellent candidate to compare against.
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Timetable and Milestones

The planned starting date is 26th October 2019.
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1. 26th October - 8th November Front-end

Design and implement the in memory representation of the IR.

Implement a lexer, parser, type-checker and simple lowering mechanism targeting
this representation.

Write a small test-suite to test the correctness of the constructed IR.

Milestone: Completed front-end

2. 9th November - 22nd November Back-end

Implement the LLVM IR generation pass.

Set-up linker to produce executables linked to the Boehm-Demers-Weiser GC.

Enable the IR to be configured to interact with the GC in leak detection mode.

Begin implementation of benchmarks.

Extend the test-suite to test the correctness of the generated code.

Milestone: Compiler now capable of producing garbage collected executables

3. 23rd November - 6th December Analysis framework

Implement the data flow analysis framework and any supporting data structures
(such as 3vl sets and relations).

Write a sample data-flow analysis using the framework to verify the correctness and
usability of the framework (i.e. a live-variable analysis).

Continue implementation of benchmarks.

Milestone: Can now perform a data-flow analysis on the IR

4. 7th December - 20th December Shape, Share and Access

Implement each of Proust’s analyses using the constructed framework and any sup-
porting data structures (such as paths and zones).

Finish implementing benchmarks.

Milestone: Completed implementation of all of Proust’s three analyses and bench-
marking suite

5. 21st December - 3rd January Scan and Clean

Implement the compile-time function Scan for scanning zones.

Implement the compile-time function Clean using the implementations of Scan
and Access in order to free candidate heap blocks.

Further extend test-suite to ensure generated cleaning code is in fact cleaning all
necessary heap blocks (issues with the analysis discovered as a result of this will also
have to be fixed here).
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Milestone: Completed implementation of Proust’s static memory management ap-
proach

6. 4th January - 17th January [Slack ]

Draft progress report and project presentation.

If time allows, begin implementation of one or more extensions.

Begin collection of data for evaluation.

Milestone: Progress report drafted and delivered to Director of Studies and supervi-
sor.

7. 18th January - 31st January Complete progress report

If time allows, continue implementation of one or more extensions.

Continue collection of data for evaluation.

Milestone: Progress report submitted

8. 1st February - 14th February [Slack ]

If time allows, complete implementation of one or more extensions.

Finish collection of data for evaluation.

Milestone: Collected all data required for evaluation

9. 15th February - 28th February Begin write-up

Complete a draft of the introduction and preparation sections.

Milestone: Introduction and preparation sections drafted and delivered to supervisor
and Director of Studies for feedback.

10. 29th February - 13th March Continue write-up

Respond to feedback on the introduction and preparation sections.

Complete a draft of the implementation section.

Milestone: Implementation section drafted and delivered to supervisor and Director
of Studies for feedback.

11. 14th March - 27th March Continue write-up

Respond to feedback on the implementation section.

Complete a draft of the evaluation section.

Milestone: Evaluation section drafted and delivered to supervisor and Director of
Studies for feedback.
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12. 28th March - 10th April Complete write-up

Respond to feedback on evaluation section.

Milestone: Dissertation completed and delivered as PDF to supervisor and Director
of Studies for feedback.

13. 11th April - 24th April [Slack ]

Respond to any final comments on Dissertation as a whole.

Milestone: Dissertation submitted
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