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in Intensional Type Theory

Proof Synthesis with Free Extensions

Abstract

Recent developments in the foundations of mathematics have led to a surge of

interest in intensional theories of types and their applications in verified pro-

gramming & formalised mathematics. Due to their constructive nature, these

theories generally cannot benefit from classical proof automation techniques,

but concurrently require a great deal of ‘bookkeeping’ to work with their proof-

relevant notions of identity. With the aim of eliminating some of this burden,

this dissertation discusses the application of a class of mathematical construc-

tions known as free extensions to the problem of proof synthesis in intensional

type theory. Specifically, this work describes the design and implementation of

an extensible tactic for the Agda proof assistant, capable of synthesising proofs

of algebraic identities. This tactic is formally verified as sound and complete,

does not rely on postulates or extensionality, and is compatible with a broad

variety of Agda configurations.
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1 — Introduction
This dissertation discusses the application of a class of mathematical constructions

known as free extensions to the problem of proof synthesis in intensional type the-

ory. Specifically, this work describes the design and implementation of an extensible

tactic for the Agda proof assistant[17], capable of synthesising proofs of algebraic

identities. This tactic is formally verified as sound and complete, does not rely on

postulates or extensionality, and is compatible with a broad variety of Agda config-

urations.

This chapter gives a brief overview of the problem space and describes the pri-

mary contributions of this work. Chapter 2 builds on this discussion, motivating

the problem and touching briefly on existing approaches. Chapter 3 then provides

a detailed introduction to free extensions, generalising their definition to a broad

class of equational systems described by Fiore & Hur[8]. Following this, chapters 4

and 5 describe my formalisation of these concepts in the Agda proof assistant and

how they can be integrated into a tactic using Agda’s proof reflection tools. Finally,

chapter 6 concludes the dissertation, summarising my findings.

1.1 Overview

It is well-known that dependent type theories are highly amenable for use both as

foundations for constructive mathematics and for verified programming[14]. While

many dependently typed programming languages based on these type theories ex-

ist[4, 17, 18], we are yet to see their widespread application outside of academia.

From personal experience, I believe the primary barrier to the widespread de-

ployment of these systems is an obstructively tedious user experience. Peter Han-

cock famously said of the Coq proof assistant[18] “Using Coq is like doing brain

surgery over the telephone”. The lack of automation in Agda[19] and slow type-

checking performance makes it similarly difficult to use for large-scale formalisa-

tion and verification projects.

Compounding these issues is the problem of extensionality. It is generally de-

sirable for dependent type systems to build on type theories with decidable type-

checking. However, supporting decidable type-checking requires we make a the-

oretical distinction between a theory’s internal notion of identity and its equality

judgements[12]. Type theories with this distinction are said to be intensional (as op-

posed to extensional). Regrettably, many popular intensional type theories cannot

directly support key extensional concepts found throughout mathematics and com-

puter science (e.g., subobjects and quotients). While there are many proposed em-

1



CHAPTER 1. INTRODUCTION 2

beddings of these constructions in such theories, they remain largely unsupported

in major implementations. Instead, users are required to work under these em-

beddings explicitly, potentially postulating additional axioms. For example, it is

common to work with so-called setoids (sets equipped with an equivalence relation)

in place of sets in order to support quotients[3], or to postulate function extension-

ality such that operationally identical functions can be identified. Taken together,

these issues adversely affect the readability of proofs and the canonicity properties

that type theories usually enjoy, further hurting the user experience.

Rather than adding to the body of work proposing novel type theories, bet-

ter suited to the formalisation of extensional constructs (e.g., homotopy type the-

ory[16]), this work leverages existing techniques in order to simplify the task of de-

veloping proofs in intensional type theories as they exist in mainstream implemen-

tations today. In particular, recent work in the field of multi-stage programming,

due to Yallop et al. highlights the applicability of a class of algebraic constructions,

known as free extensions, to the problem of optimising staged computations using

algebraic identities[20]. Further work from Allais et al. demonstrates that these

constructions have additional applications in dependent type systems, efficiently

dealing with proof obligations in terms indexed by algebraic computations[1]. This

dissertation extends this work to the problem of synthesising proofs of algebraic

identities in Martin-Löf’s intensional type theory[15], as implemented in the Agda

proof assistant, for arbitrary finitary, mono-sorted equational theories.

1.2 Contributions

The primary contribution of this work is an extensible tactic for the Agda proof as-

sistant, capable of synthesising proofs of algebraic identities. This tactic is paramet-

ric in the algebraic solver (free extension) that it uses and can therefore be extended

to support any of a broad class of equational theories. The tactic is packaged along-

side a universe-polymorphic formalisation of finitary, mono-sorted universal alge-

bra and equational logic, designed to be compatible with the Agda standard library’s

existing characterisations of algebraic structures. This formalisation enables, for the

first time, the specification and verification of free extensions for equational theories

in terms of a universal property, thus guaranteeing the tactic is sound and complete

for any theory. To demonstrate the capability of this framework, this work further

contributes verified solvers for semigroups and commutative semigroups (defined

over arbitrary setoids) alongside an extensive collection of example proofs.



2 — Background
This chapter introduces various background material in order to motivate the prob-

lem of proof synthesis. §2.1 outlines key concepts from dependent type theory, as-

suming an understanding of simple types. §2.2 takes these concepts into the context

of an implementation (Agda), demonstrating typical frustrations of proof develop-

ment. Finally, §2.3 concludes with a summary, stating the aims of this project.

2.1 Dependent Types

This section outlines the basic concepts in dependent type theory as relevant to

motivating this work; for a more exhaustive introduction, see [16]. This outline

is limited to Martin-Löf’s intensional type theory (MLTT)[15], and adopts similar

notation to that used by the Univalent Foundations Program in [16].

2.1.1 Motivation

Simple type theories guarantee various classes of undesirable programs are ill-typed

(e.g,. meaningless applications, such as 3 + true), but cannot reason about pro-

gram correctness in full generality. Conventionally, proving correctness properties

is done by developing a semantics for the language in question, and appealing to

this when formalising correctness arguments.

While fundamentally correct, this approach is unsatisfactory for several rea-

sons. First, we are required to formalise our semantics and develop its meta-theory.

This is an enormous challenge, even for relatively simple languages. Second, a pro-

gram and its proofs live in two distinct environments: the development environ-

ment and a separate proof assistant, adding to the burden of maintenance. This sep-

aration of program from proof is particularly frustrating when working in a typed

λ-calculus. The Curry-Howard correspondence tells us that the type system of such

a calculus has logical content. It therefore seems reasonable to expect to be able to

state and prove correctness properties using this logic.

Unfortunately, simple type theories suffer from fundamental limitations in

their expressive power, meaning that this kind of reasoning is not possible. In

particular, the logical content of a type theory comes from our interpretation of

propositions as types. While program correctness properties are normally stated

and proven using higher-order logic, non-dependent type theories are limited in

their presentations of quantification and identity, preventing them from capturing

predicate calculus in full generality. Bridging this gap is the primary motivation for

the development of dependent type theories.

3



CHAPTER 2. BACKGROUND 4

2.1.2 Quantification

Fundamental to the notion of quantification is the idea of a predicate. In classical set

theory, a predicate can be described as a truth-valued function. Martin-Löf makes

the observation that under propositions-as-types, a predicate therefore corresponds

to a ‘type-valued’ function. This idea is made precise in terms of indexed families

of types.

Suppose we have a type A and, for every term x : A, a type B(x). Under

propositions-as-types, constructing an element of B(x) given some specific choice

of x corresponds to proving one of an A-indexed family of propositions – or, equiv-

alently, proving the predicate B holds at the point x.

From this understanding of predicates in type theory, the Martin-Löf interpre-

tation of quantifiers follows naturally. For example, given some A-indexed type

family B, what does it mean to prove ‘for all x : A, B(x) ’? It is easy to see that

constructing an element of B(x) given an arbitrary x : A amounts to writing down

some function taking each x : A to an element of B(x). However, a function f whose

return type depends on its input is untypable using simple types. To rectify this,

Martin-Löf introduces the type-former Π (dependent product), with the following

introduction and elimination rules (assuming implicitly that all contexts and types

are well-formed):

Γ ,x : A ` t : B(x)
(ΠI)

Γ ` λ(x : A).t :
∏
x:AB(x)

Γ ` f :
∏
x:AB(x) Γ ` a : A

(ΠE)
Γ ` f a : B(a)

The introduction gives us the typing f :
∏
x:AB(x), usually read ‘f is a dependent

function from A to B’, or ‘f is a proof that for all x : A, B(x)’, while the elimination rule

corresponds to application of f , or logically speaking, universal instantiation. Note

that these rules correspond directly to the usual introduction and elimination rules

for ∀.

Similarly, we can ask what it means to prove ‘there exists an x : A such that B(x)’.

In an intuitionistic interpretation of existence, proving this corresponds to exhibit-

ing some witness a : A, alongside a proof of B(a). Simply put, we are interested

in pairs (a : A,b : B(a)). As any such pair proves our formula, an encoding of this

formula as a type reduces to pairs with a second component whose type depends
on the value of its first component. As with ∀, this encoding of existence cannot

be captured using simple types, leading Martin-Löf to introduce the type-former Σ

(dependent sum),



CHAPTER 2. BACKGROUND 5

Γ ` a : A Γ ` b : B(a)
(ΣI)

Γ ` (a,b) :
∑
x:AB(x)

Γ ` p : Σx:AB(x) Γ ,x : A,y : B(a) ` g : C(x,y)
(ΣE)

Γ ` ind∑
x:AB(x)(C,x,y.g,p) : C(p)

where the introduction rule corresponds directly to the construction of a witness of

B. In the elimination rule, ind∑
x:AB(x) is the induction principal for dependent sums.

Informally, this states that to prove the predicate C holds for an arbitrary dependent

pair, it is enough to show that it holds for all canonical pairs (i.e., pairs of the form

(a,b) for some a : A and b : B(a)). Note again that these rules correspond directly to

the introduction and elimination rules for ∃ (in the intuitionistic sense).

2.1.3 Identity

One subtle issue of dependent type theory is the problem of identity propositions,

i.e., sentences of the form ‘x and y are identical’ which we intend to encode as types.

Identity propositions are encoded as types using the type-former Id. Given any

type A and x,y : A, IdA(x,y) is understood as the type of proofs that x and y are

identical elements of A. Id comes equipped with the following introduction and

elimination rules:

Γ ` a : A (IdI)
Γ ` reflAa : IdA(a,a)

Γ ` a : A Γ ` b : A Γ ` p : IdA(a,b) Γ ,x : A ` c : C(x,x,reflAx)
(IdE)

Γ ` indIdA(C,x.c,a,b,p) : C(a,b,p)

where the introduction rule corresponds to proof by reflexivity. In the elimination

rule, indIdA is the induction principal for identities and states that to prove some

predicate C holds for an identification p : IdA(a,b), it is enough to show that C holds

for reflexivity at every x : A.

2.1.4 Judgemental Equality & Extensionality

Using the notion of identity introduced in §2.1.3, we might hope to be able to prove

simple facts about arithmetic. For example, assuming standard definitions for +

and ×, we might expect the following typing to be derivable:

λ(x : N).refl
N

(2× x) :
∏
x:N Id

N
(2× x,x+ x) (2.1)
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However, applying the typing rules introduced so far in this chapter, we find this

term actually types as follows:

· · ·
x : N ` 2× x : N (IdI)

x : N ` refl
N

(2× x) : Id
N

(2× x,2× x)
(ΠI)

· ` λ(x : N).refl
N

(2× x) :
∏
x:N Id

N
(2× x,2× x)

It is reasonable to expect that, as 2× x will β-reduce to x + x, we can simply replace

Id
N

(2×x,2×x) with Id
N

(2×x,x+x). However, the deduction system described so far

has no notion of β-conversion, making this kind of substitution impossible without

use of informal reasoning. Formalising this idea motivates the introduction of a

notion of judgemental (sometimes definitional) equality.

Judgemental equalities take one of two forms: Γ ` a ≡ b : A, stating that in

context Γ , a and b are equal terms of type A; and Γ ` A ≡ B, stating that in context

Γ , A and B are equal types. These two judgements are defined mutually inductively,

but can be identified in the presence of universe types (§2.1.5).

The inductive definition of judgemental equality contains βη-conversions for

all type constructors, alongside rules ensuring that both judgements induce equiv-

alence relations on terms and types in a given context. Taken with the following

rule:

Γ ` a : A Γ ` A ≡ B
Γ ` a : B

computation inside of types becomes possible, making 2.1 derivable.

Critically, judgemental equality is distinct from identity as discussed in §2.1.3:

the first is as a purely meta-theoretic notion, while the second is internal to the

theory. Judgemental equalities can be used in order to derive typings involving some

computation, but are not first class objects, preventing proof terms from referring

to them.

With a notion of judgemental equality we can also define canonicity. A type

theory is N-canonical, if every closed term of type N is judgementally equal to a

numeral. This implies that every term of every type is βη-equivalent to a ‘canonical

form’ (e.g., every dependent pair is definitionally equal to a pair (a,b)), as given a

non-canonical element of N, the induction principle for N allows for the definition

of a non-canonical element of any inhabited type. Proving canonicity is equivalent

to proving that the computational interpretation of our type theory forms a conflu-

ent strongly-normalising rewrite system. Under the Curry-Howard correspondence,

this implies the consistency of the logical content of our type theory (relative to the

meta-theory in which canonicity was proven).
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Identity types identify strictly more terms than equality judgements; as while

the above remarks guarantee the following rule is admissible,

Γ ` a ≡ b : A
Γ ` reflAa : IdA(a,b)

the reciprocal is not the case. For example, it is elementary to give a term of type∏
x,y,z:N

Id
N

((x+ y) + z,x+ (y + z))

i.e., it is trivial to prove

∀x,y,z ∈N. (x+ y) + z = x+ (y + z)

However, we cannot derive the judgement

x : N, y : N, z : N ` (x+ y) + z ≡ x+ (y + z) : N

as neither the left-hand side nor the right-hand side contain β-reducible sub-terms.

In other words, the left and right-hand sides differ intensionally, as unequal pieces

of syntax, but have provably identical extensions.
We could bridge this gap by identifying these two notions of equality. For this

purpose, the following rule is sufficient:

Γ ` p : IdA(a,b)

Γ ` a ≡ b : A

However, this would have the undesirable effect of making type-checking undecid-

able, as deriving a judgemental equality could now involve synthesising a proof of

an arbitrary theorem. It is therefore common to omit this rule, leaving us with an

intensional type theory (as opposed to an extensional theory). Instead, when exten-

sionality is required, axioms such as uniqueness of identity proofs and K can be in-

troduced, postulating that all identity proofs are judgementally equal to proofs by

reflexivity. The introduction of either of these axioms to an intensional type theory

yields a propositionally extensional type theory, but does not impact the decidability

of type-checking.

However, there are many reasons for the interest in intensional type theories

beyond decidablility of type-checking. In particular, omitting extensionality allows

for a richer class of models, some of which are of particular theoretical interest. For

example, recent work from the Univalent Foundations Program introduces a homo-

topical interpretation of identity types[16]. This interpretation of identity types is
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not possible in an extensional theory, and has been shown to be inconsistent with

the two axioms mentioned above.

To summarise, intensional MLTT is fundamentally weaker than its extensional

variants, but is of great interest due to its desirable type-checking properties and

the non-standard interpretations of identity that it supports. By focusing on pure

intensional MLTT, this work remains applicable to any of the many extensions to

MLTT that have been developed, including its extensional variants.

2.1.5 Universes

A final idea from dependent type theory of particular significance to this work is

the idea of universe types. Up until this point, our use of quantification has been

restricted to quantifying over elements of some type, but not types themselves (i.e.,

the first-order case). Universe types allow us to support higher-order quantification

with minimal adjustment to our deductive system.

A universe U is a type whose elements are themselves types. We further require

that universes are closed under type formation. For example, given A,B : U , we can

form the type A→ B, which, by closure, should too be an element of U .

Indexed families of types have a natural encoding using universes. In particu-

lar, every A-indexed type family whose codomain lives in a universe U corresponds

to an element of A→ U . Many authors therefore identify the two, defining depen-

dent sums and products in terms of functions into universe types.

In its original presentation, MLTT assumed a single universe U , of which all

types were elements, including U itself. While this seems like an attractive idea,

unfortunately, taking U : U leads to a contradiction by way of Girard’s paradox (a

type-theoretic analogue of Russell’s paradox). To avoid such paradoxes, contempo-

rary presentations instead assume a predicative hierarchy of universe types,

U0 : U1 : ... : Un : ...

with the property that a type A is well-formed in a context Γ if and only if there

exists an i such that Γ ` A : Ui . It is also common to assume universe cumulativity
(i.e., if A : Ui then A : Ui+1). However, by omitting this assumption, we retain the

desirable property that the theory has unique typing (up to βη-equivalence).

2.2 Dependent Types in Practice

With the core concepts of dependent type theory outlined, this section discusses

their presentation in the context of an implementation. Specifically, this section
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introduces several simple proofs, as formalised in the Agda proof assistant. The

principal aim here is to point out typical frustrations associated with proof devel-

opment in Agda, but this section also provides a basis for comprehension of the

more complex proofs presented in later chapters.

2.2.1 A First Example

The notation Agda uses differs superficially from that of §2.1. For example, Π-types

are introduced using ∀, and identity types using _≡_. Leveraging type inference al-

gorithms, Agda also allows arguments to be marked as hidden (using {−}), suggesting

to the type-checker that, wherever possible, these arguments should be inferred au-

tomatically. While various other notational differences exist, these will be explained

as necessary.

As a first example, consider the following proof of a trivial theorem of arith-

metic,

simple : ∀ x y→ x + (2 + (3 + y)) ≡ x + (5 + y)

simple x y = refl

taking note of the differences in notation mentioned above. In this case, inference

of hidden arguments allows the constructor refl to be used without any additional

information.

2.2.2 Variations on a Theme

Building on this example, consider the following proof of an equivalent theorem,

variation1 : ∀ x y→ (x + 2) + (3 + y) ≡ x + (5 + y)

variation1 x y = +-assoc x 2 (3 + y)

Notice that in place of refl, this proof makes use of the associativity of _+_, a result

proven in Agda’s standard library. This choice of proof term is not arbitrary: refl

cannot be applied here.

To those unfamiliar with interactive proof assistants, this may seem absurd.

The two theorems differ only in the placement of their brackets, and associativity

tells us that this is inconsequential. When commutativity is involved, too, the proof

becomes drawn out,

variation2 : ∀ x y→ (2 + x) + (y + 3) ≡ x + (y + 5)

variation2 x y = begin

(2 + x) + (y + 3)
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≡〈 cong2 _+_ (+-comm 2 x) (+-comm y 3) 〉
(x + 2) + (3 + y)

≡〈 +-assoc x 2 (3 + y) 〉
x + (5 + y)

≡〈 cong2 _+_ refl (+-comm 5 y) 〉
x + (y + 5)

�

Given the apparent simplicity of these examples, it is entirely reasonable to

question why the type-checker would refuse to accept proofs by reflexivity. How-

ever, recall that proofs by reflexivity are only permitted in situations where we

can demonstrate the identity holds judgementally. The fact that these results are

a consequence of derived algebraic properties of _+_ (i.e., they do not follow from

oriented βη-reduction) means that they cannot hold judgementally, and, as such,

reflexivity is not typeable in this context. This is a consequence of the theoretical

distinction between identity types and equality judgements discussed in §2.1.4.

Of course, substituting x and y for any numerals m and n will result in an

identity that holds judgementally by way of a series of simple β-reductions. The

problem here stems from the fact that x and y are not numerals, but rather bound

variables. The definition of _+_ is given by cases on its first argument, meaning

that in situations where its first argument is not a numeral (i.e., non-canonical), it is

impossible to determine how an application should be reduced.

In general, non-canonical terms that cannot be reduced due to the presence of

one or more free variables are said to be open. As demonstrated by the examples

above, open sub-terms greatly diminish the type-checker’s ability to derive judge-

mental equalities, generally requiring it to fall back on a naïve syntax-directed ap-

proach. Such an approach will fail in all but the most trivial cases, hence the re-

quirement for explicit proofs.

2.2.3 Spelling Out the Problem

The problem identified in §2.2.2 is not that our notion of judgemental equality is too

weak. Strengthening equality judgements to capture examples such as those above

would come at the cost of intensionality, which, as discussed in §2.1.4, is something

that we would like to preserve. Rather, the problem is the fact that human effort

is required to derive identity proofs in situations where it is entirely possible to do

so mechanically. In other words, we want to be able to synthesise identity proofs

automatically, just knowing the algebraic properties of the operators involved.
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2.2.4 Algebraic Solvers & Reflection

The problem identified in §2.2.3 is well known, and has been approached with a

variety of techniques in a number of settings. In proof assistants with a dedicated

language for authoring tactics (e.g., Coq), one can imagine writing a proof search

algorithm that uses simple algebraic simplifications in order to synthesise proofs of

the kind seen so far in this chapter.

Without such a language, Agda relies on internal algebraic solvers, such as the

Agda standard library’s ring solver, for this task. For example, the ring solver can

be applied to the previous example as follows:

import Algebra.Solver.Ring.NaturalCoefficients.Default as Solver

automated : ∀ x y→ (2 + x) + (y + 3) ≡ x + (y + 5)

automated = solve 2 (λ x y→ (con 2 :+ x) :+ (y :+ con 3) :=

x :+ (y :+ con 5))

refl

where open Solver +-*-commutativeSemiring

Here, solve accepts as arguments the number of free variables in its goal; a descrip-

tion of the abstract syntax of its goal; and a proof that the normal forms it computes

for each side are identical. While verbose, this is considerably simpler than a hand-

written proof.

Notice that, assuming the normalised identity always holds judgementally, all

of the information passed to solve is statically available. In early versions of Agda,

this information was inaccessible to Agda code. However, since the addition of

Agda’s reflection system, it has been possible to write code capable of inferring this

information automatically and generating an appropriate call to solve. Exploiting

this, the above proof simplifies further to,

reflection : ∀ x y→ (2 + x) + (y + 3) ≡ x + (y + 5)

reflection = solve-∀
where open import Data.Nat.Tactic.RingSolver

2.2.5 The Catch

Solvers capable of synthesising proofs of the identities we are interested in exist

for a variety of algebraic structures. Implementations of a number of these can be

found in Agda’s standard library. A handful of these implementations have been

enhanced with proof reflection similar to that shown above. There is, however, a

catch.
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Development of these solvers is fragmented, with most specified, implemented

and verified independently. The more complex examples, such as the ring solver, are

split across dozens of modules, and consist of thousands of lines of code, but provide

little opportunity for reuse. Furthermore, enhancements based on proof reflection

are tailor-made for each solver and are themselves complex programs which cannot

be verified due to the limitations of Agda’s reflection system.

Fundamentally, each of these solvers performs the same task: deciding equiva-

lence of open terms in some equational theory. This suggests some level of redun-

dancy in current approaches to their design and implementation, as their specifica-

tions are identical, modulo the theory they decide. This approach not only results in

wasted effort, but also limits the ways in which algebraic solvers can be composed.

Similar points can be made for the application of reflection.

The objective of this project is to tackle the problem of proof synthesis with

a single unified approach. The ultimate goal of the project is to develop a maxi-

mally reusable framework for the specification, implementation and verification of

algebraic solvers, enhanced with proof reflection.

2.3 Summary

This chapter outlined the key concepts that distinguish dependent type theories

from their simple counterparts. Taking these concepts into the context of Agda’a

implementation, we saw that even trivial results can involve lengthy proofs due

to the limited strength of equality judgements. However, as discussed, a stronger

equality judgement comes at the cost of losing the desirable property of intension-

ality.

As seen in §2.2, algebraic solvers can be applied to alleviate these burdens with

great effect, particularly when enhanced using proof reflection (§2.2.4). That being

said, their development has so far been scattered, resulting not only in redundancy,

but also limited composability. This project aims to provide a unified solution to

the problem of proof synthesis, while maintaining applicability to a broad range of

type theories based on MLTT.
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2.3.1 Project Aims

Specifically, this project aims to:

1. Develop a single framework in which arbitrary algebraic solvers can be speci-

fied and verified.

2. Ensure the framework retains compatibility with a broad family of type theo-

ries based on intensional MLTT.

3. Demonstrate the capability of this framework by implementing and verifying

a collection of algebraic solvers.

4. Enhance this framework with a single tactic, parametric in its algebraic solver,

eliminating the need for tailor-made solutions for different classes of algebra.

5. Produce a collection of example proofs, synthesised using the tactic.



3 — Free Extensions
The previous chapter demonstrated the opportunity for a unified approach to the

development of verified algebraic solvers. However, it gave no suggestion as to the

nature of such an approach. To this end, this chapter describes a class of mathe-

matical constructions known as free extensions, demonstrating their applicability

in this context.

Free extensions are a well-understood concept in universal algebra, but are

rarely discussed in the literature. In fact, this chapter argues that, while unac-

knowledged, free extensions already serve as the foundation for a variety of real-

world proof-synthesis solutions. From this, it follows that the problem of providing

a general-purpose framework for the development of verified algebraic solvers re-

duces to the problem of specifying free extensions for arbitrary equational systems.

Overview §3.1 discusses the problem of discovering algebraic identities in the

context of abstract syntax. This discussion leads to an informal notion of free ex-

tension, which the remainder of this chapter attempts to capture formally. In par-

ticular, §3.2 recalls the definition of a broad class of equational systems described

by Fiore & Hur[8]. This serves as a foundation for §3.3, which provides a general

definition of free extensions in this setting and discusses their relationship with

normalisation-by-evaluation techniques. §3.4 then concludes with a brief summary.

3.1 Abstract Syntax & Normal Forms

Let x and y be arbitrary natural numbers. It goes without saying that

(2 + x) + (y + 3) = x+ (y + 5) (3.1)

However, this judgement is based on our intuitions about +, and its various algebraic

properties. A proof assistant has a very different view.

While we, as humans, see the equation above and immediately infer its seman-

tic content based on our experience with arithmetic, a proof assistant will treat the

left-hand and right-hand sides of this equation as syntactic objects. Thus, from the

perspective of a proof assistant, 3.1 is better pictured as

+

+

2 x

+

y 3

≈ +

x +

y 5

14
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where ≈ (informally) encodes our notion semantic equivalence, as applied to syntax

trees. It should now be clear why the validity of this equation is not immediately

obvious to a proof assistant: the two sides are not equal as trees.
As discussed in the previous chapter, in situations where the values of x and y

are known, we can apply a series of β-reductions in order to derive this equivalence.

In this situation, this is not the case. Instead, we have a pair of partially static ex-

pressions: each contains some dynamic sub-terms (e.g., x and y), the values of which

are as yet undetermined; and some static sub-terms (e.g., 2,3 and 5), the values of

which are known. In proving this equivalence, our goal is to show that for every

assignment of x and y, the two sides will reduce to a pair of βη-equivalent terms.

3.1.1 Syntactic Equivalence

To make these ideas precise, we must properly define what is meant by term and

equivalence of terms under ≈.

Let V be a set of variable symbols (v0,v1, ...), then define the set TN+
V inductively,

TN+
V ::= n̄ | v | ε | t1 ⊕ t2

where n ∈N, v ∈ V and t1, t2 ∈ T
N+
V . Given this definition, we can interpret TN+

V

as the set of (partially static) terms of the commutative monoid N+ = (N,+,0), with

variables in V . For example, the expression

(2 + x) + (y + 3) (3.2)

corresponds to the term

(2̄⊕ v0)⊕ (v1 ⊕ 3̄) (3.3)

Note that, when extracting the syntax of an expression, we must be careful to map

any dynamic atomic sub-expressions to elements of V , and any static atomic sub-

expressions to their inclusion in TN+
V .

Given some context, Γ : V →N, assigning each variable symbol to an element

of N, we can define an interpretation function ~−�N+
Γ

: TN+
V →N recursively,

~n̄�N+
Γ

= n

~v�N+
Γ

= Γ (v)

~ε�N+
Γ

= 0

~t1 ⊕ t2�
N+
Γ

= ~t1�
N+
Γ

+ ~t2�
N+
Γ

As an example, let Γ = [v0 7→ x;v1 7→ y]. In this context, we can interpret the term
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3.3 to recover 3.2,

~(2̄⊕ v0)⊕ (v1 ⊕ 3̄)�N+
Γ

= ~2̄⊕ v0�
N+
Γ

+ ~v1 ⊕ 3̄�N+
Γ

= (~2̄�N+
Γ

+ ~v0�
N+
Γ

) + (~v1�
N+
Γ

+ ~3̄�N+
Γ

)

= (2 + Γ (v0)) + (Γ (v1) + 3)

= (2 + x) + (y + 3)

With these definitions, we can now turn our attention to the equivalence

≈. In defining ≈, our goal is to relate precisely those terms that are provably

equivalent up to associativity, commutativity, units and the evaluation of wholly

static sub-terms. To this end, we may define ≈ inductively as follows,

(Refl.)
t ≈ t

t1 ≈ t2 (Sym.)
t2 ≈ t1

t1 ≈ t2 t2 ≈ t3 (Trans.)
t1 ≈ t3

t1 ≈ t′1 t2 ≈ t′2 (Cong.)
t1 ⊕ t2 ≈ t′1 ⊕ t

′
2

(⊕-Eval.)
n̄1 ⊕ n̄2 ≈ n1 +n2

(ε-Eval.)
ε ≈ 0̄

(Unitl)ε⊕ t ≈ t
(Unitr)t ⊕ ε ≈ t

(Comm.)
t1 ⊕ t2 ≈ t2 ⊕ t1

(Assoc.)
(t1 ⊕ t2)⊕ t3 ≈ t1 ⊕ (t2 ⊕ t3)

By including the rules Refl., Sym. and Trans., we ensure that this definition forms

an equivalence over TN+
V . The structural rules ⊕−Eval., ε−Eval. and Cong. allow us

to compute within sub-terms, evaluating static sub-terms whenever possible. The

remaining rules straight-forwardly codify the axioms of commutative monoids, in-

troducing associativity, commutativity and ensuring ε is an identity for ⊕ (up to

≈).

Most importantly, using this definition of ≈, it can be shown that, given t1, t2 ∈
TN+
V ,

t1 ≈ t2 =⇒ ~t1�
N+
Γ

= ~t2�
N+
Γ

(3.4)

for any context Γ . That is, ~−�N+
Γ

is a congruence over ≈.

The importance of this result becomes clear when considered in conjunction

with the function [−]≈ : TN+
V → TN+

V / ≈, sending each t ∈ TN+
V to its equivalence

class [t]≈. Given terms t1, t2 ∈ T
N+
V , for any context Γ ,

[t1]≈ = [t2]≈ ⇐⇒ t1 ≈ t2 (by definition)

=⇒ ~t1�
N+
Γ

= ~t2�
N+
Γ

(using 3.4)

In other words, we can reduce the problem of deriving algebraic identities to the
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problem of deriving identities between equivalence classes.

To give a concrete example, consider again the equation 3.1. The following

diagram demonstrates the process of deriving this identity, making use of the results

described above.

[(2̄⊕ v0)⊕ (v1 ⊕ 3̄)]≈ [v0 ⊕ (v1 ⊕ 5̄)]≈

(2̄⊕ v0)⊕ (v1 ⊕ 3̄) (v0 ⊕ v1)⊕ 5̄ v0 ⊕ (v1 ⊕ 5̄)

(2 + x) + (y + 3) (x+ y) + 5 x+ (y + 5)

~−�N+
Γ

[−]≈

~−�N+
Γ

[−]≈

~−�N+
Γ

∈∈

In particular, each side of the equation determines a piece of abstract syntax (il-

lustrated with dashed arrows). As demonstrated, this syntax can be interpreted

in the context Γ = [v0 7→ x;v1 7→ y] to recover the original expressions. However,

we can alternatively take each piece of syntax to its equivalence class under ≈. In

this case, these equivalence classes are identical. From this fact and the inclusion

TN+
V / ≈ ⊆ TN+

V , we can reify a single piece of syntax, equivalent under ≈ to the two

pieces of syntax we began with. It follows, using 3.4, that the interpretation of this

single piece of syntax under Γ will be equal to both the left-hand side and right-

hand side of the original equation. Thus, by transitivity, the original equation must

hold.

3.1.2 Computing Equivalence Classes

Unfortunately, the problem of determining the equivalence class of an object under

an arbitrary equivalence is undecidable. However, there are many specific equiv-

alences which are decidable, with each equivalence class conveniently represented

by a canonical representative. Doing so reduces the problem of deciding equal-

ity of equivalence classes to deciding equality of representatives, for which a naïve

syntax-directed approach will suffice.

For the case of TN+
V , notice that, as we are free to commute sub-terms, reassoci-

ate, eliminate instances of ε and reduce wholly static sub-terms, each term t ∈ TN+
V

is equivalent to a term of the form ⊕
v∈V

vk(v)

⊕ n̄
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where

vm = v ⊕ ...⊕ v︸    ︷︷    ︸
m times

and k : V →N sends each v ∈ V to the number of occurrences of v in t. Notice that

the left-hand side of this term is purely dynamic, and is determined entirely by k,

while the right-hand is purely static, and is determined entirely by n.

This suggests that we have a correspondence between equivalence classes [t]≈
and pairs (k,n) ∈ N

V ×N. We can make this correspondence explicit by defining

two maps:

b−c : TN+
V →N

V ×N (reflect)

d−e : NV ×N→ TN+
V (reify)

such that, for all t1, t2 ∈ T
N+
V and p1,p2 ∈NV ×N,

t1 ≈ t2 ⇐⇒ bt1c = bt2c (3.5)

and ⌈
p1

⌉
=

⌈
p2

⌉
⇐⇒ p1 = p2

It is not difficult to see that, to this end, we can define b−c as

bn̄c = ([_ 7→ 0],n)

bvc = ([v 7→ 1;_ 7→ 0],0)

bεc = ([_ 7→ 0],0)

bt1 ⊕ t2c = bt1c� bt2c

where

(k1,n1)� (k2,n2) = (λx.y.k1(x) + k2(y),n1 +n2)

and d−e as ⌈
(k,n)

⌉
=

⊕
v∈V

vk(v)

⊕ n̄
With these maps, it finally becomes possible to derive a proof of 3.1 mechani-
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cally. In particular, reflecting the syntax of each side of the equation, we find that⌊
(2̄⊕ v0)⊕ (v1 ⊕ 3̄)

⌋
=

⌊
2̄⊕ v0

⌋
�
⌊
v1 ⊕ 3̄

⌋
= (

⌊
2̄
⌋
� bv0c)� (bv1c�

⌊
3̄
⌋
)

= (([v0 7→ 0;v1 7→ 0],2)� ([v0 7→ 1;v1 7→ 0],0))

� (([v0 7→ 0;v1 7→ 1],0)� ([v0 7→ 0;v1 7→ 0],3))

= ([v0 7→ 1;v1 7→ 0],2)� ([v0 7→ 0;v1 7→ 1],3)

= ([v0 7→ 1;v1 7→ 1],5)

and ⌊
v0 ⊕ (v1 ⊕ 5̄)

⌋
= bv0c�

⌊
v1 ⊕ 5̄

⌋
= bv0c� (bv1c�

⌊
5̄
⌋
)

= ([v0 7→ 1;v1 7→ 0],0)

� (([v0 7→ 0;v1 7→ 1],0)� ([v0 7→ 0;v1 7→ 0],5))

= ([v0 7→ 1;v1 7→ 0],0)� ([v0 7→ 0;v1 7→ 1],5)

= ([v0 7→ 1;v1 7→ 1],5)

Thus, by 3.5 and 3.4, the original equation must hold. We can also reify this canon-

ical representation to obtain a normal form,

⌈
([v0 7→ 1;v1 7→ 1],5)

⌉
= (v0 ⊕ v1) + 5

It should be noted, at this point, that none of the techniques described so far in

this chapter are unique to N+, or even commutative monoids in general. While the

details of the constructions differ, this precise approach to deriving equivalences is

implemented for a number of algebraic structures in Agda’s standard library. These

structures include rings, monoids and commutative monoids. For each, a set of

terms is defined alongside a notion of syntactic equivalence. A method for comput-

ing representatives for equivalence classes is then stated and verified, ultimately

yielding a proof synthesis solution similar to that described here.

However, the goal of this project is to develop a general framework, within

which algebraic solvers for arbitrary structures can be implemented and verified. It

is therefore essential identify the shared properties of these constructions, with the

aim of describing a process by which their specifications can be derived automati-

cally, given some algebraic theory.



CHAPTER 3. FREE EXTENSIONS 20

3.1.3 A Universal Property

The objects described so far in this chapter fulfill deep roles in the category CMon,

of commutative monoids and monoid homomorphisms. The analogues of these

structures in other categories of algebras satisfy the same key universal property.

Critically, it is precisely this universal property that enables the proof synthesis ap-

proach described in this chapter. Thus, the goal of this section is to explain how we

arrive at this universal property, and what this means in terms of the specification

of algebraic solvers.

First, observe that TN+
V forms a commutative monoid under ⊕, working up

to ≈. By quotienting appropriately, we therefore obtain a commutative monoid

(TN+
V / ≈,⊕,ε). From this, it is trivial to show that, for any context Γ , ~−�N+

Γ
lifts

to a homomorphism, ~−�N+
Γ

: (TN+
V / ≈,⊕,ε)→N+.

This idea generalises: given an arbitrary commutative monoid X = (X,⊗,u), a

homomorphism f : N+ → X and a context Γ : V → X, we obtain a homomorphism

~−�X
Γ ,f : (TN+

V / ≈,⊕,ε)→ X given by,

~n̄�XΓ ,f = f (n)

~v�XΓ ,f = Γ (v)

~ε�XΓ ,f = u

~t1 ⊕ t2�XΓ ,f = ~t1�
X
Γ ,f ⊗ ~t2�

X
Γ ,f

In fact, it is not difficult to show that for a given Γ and f , this is the unique such

homomorphism.

Let TV ⊆ T
N+
V be the set of purely dynamic terms over V . Note that (TV / ≈,⊕,ε)

too forms a commutative monoid. However, this monoid has the special property

that, for any commutative monoidX = (X,⊗,u), each homomorphism (TV / ≈,⊕,ε)→
X is uniquely determined by a context Γ : V → X. Given this property, we say that

(TV / ≈,⊕,ε) is the free commutative monoid generated by V .

Thus, given a context Γ : V → X and a homomorphism f : N+→ X, the unique-

ness of ~−�X
Γ ,f can be illustrated diagrammatically as follows,

X

N+ (TN+
V / ≈,⊕,ε) (TV / ≈,⊕,ε)

f ∃!~−�X
Γ ,f

¯(−) ⊆

~−�X
Γ
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The reader may recognise this as the familiar coproduct in the category CMon. It

follows that (TN+
V / ≈,⊕,ε) is simply the binary coproduct of N+ with the free com-

mutative monoid over V .

Turning our attention to N
V ×N, we again discover a commutative monoid:

(NV ×N,�,bεc). Moreover, as b−c and d−e trivially lift to homomorphisms, we have

an isomorphism,

(TN+
V / ≈,⊕,ε) (NV ×N,�,bεc)

b−c

d−e

It is a standard result of category theory that objects isomorphic to a (co)-limit

object enjoy the same universal properties. In this case, this means that the algebra

(NV ×N,�,bεc) also forms a binary coproduct of N+ and (TV / ≈,⊕,ε) – or, diagram-

matically,

X

N+ (NV ×N,�,bεc) (TV / ≈,⊕,ε)
([_7→0],−) b−c

∃!h
f ~−�X

Γ

However, we can work backwards: any two (co)-limits for the same diagram

are provably isomorphic. Thus, supposing we have an arbitrary coproduct of N+

with the free commutative monoid over V , we immediately obtain an isomorphism

with (TN+
V / ≈,⊕,ε). Moreover, as this result holds constructively, we can actually

compute this isomorphism. Thus, given such a coproduct, we can mechanically

derive its corresponding reflection and reification maps and proofs that they satisfy

all of the properties needed for proof synthesis.

Again, none of the observations made here are specific to N+ or CMon. Infor-

mally, if we have some general equational theory Θ such that its category of models

AlgΘ supports the construction of free models, so long as we can construct coprod-

ucts with these free models, proof synthesis becomes possible. Hence, somewhat

imprecisely, constructing an algebraic solver for Θ reduces to providing a method

for constructing a coproduct of an arbitrary model A ∈ AlgΘ with the free model

generated by some base object V . We call this coproduct A[V ], read ‘the free ex-
tension of A by V ’. The remainder of this chapter is dedicated to making this idea

precise, for a broad class of equational systems.
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3.2 Universal Algebra & Equational Systems

Informally, universal (sometimes ‘abstract’) algebra is the the study of algebraic

structures in an abstract setting. That is, universal algebra gives us a language with

which to reason about algebraic structures (e.g., groups, rings and fields) without

consideration for the particular properties of any one such structure. General re-

sults in universal algebra therefore apply to all such structures. Abstract algebras

are sometimes characterised as ‘sets with operations’; while appealing, this view is

too limited since free extensions are applicable to a much broader class of equational

systems introduced by Fiore & Hur[8].

3.2.1 Algebraic Signatures

Fundamental to universal algebra is the notion of an algebraic signature. Just as

programmers think of programs as having types, algebraists see algebras as hav-

ing signatures. Extending this analogy, just as a type describes the structure of its

elements, an algebraic signature describes the structure of members of a class of

algebras.

Under a set-theoretic worldview, a (mono-sorted) algebraic signature Σ =

(O, [−]) consists of a set O, the set of operator symbols, and a function [−] : O →N,

assigning each operator symbol its arity. Given an algebraic signature Σ, a Σ-algebra
X = (X,~−�X) then consists of a set X, the carrier set, and an O-indexed family of

functions ~−�X sending each f ∈ O to an [f ]-ary function ~f �X : X[f ]→ X, the inter-
pretation of f .

It is well known that this is equivalent to providing a single function

~−�X :
∐
f ∈O

X[f ]→ X

That is, a function from a polynomial in X into X, where the nature of the polyno-

mial is specified entirely by the signature. In fact, given any algebraic signature Σ,

there is a polynomial endofunctor Σ̄ : Set→ Set given by

Σ̄(S) =
∐
f ∈O

S[f ]

Making this observation, defining a Σ-algebra reduces to identifying a carrier set X

and constructing a function ~−�X : Σ̄X→ X.

The critical observation that Fiore & Hur make is that this notion of algebraic

signature is neither limited to the category of sets, nor to polynomial endofunctors.
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Thus, in a general, categorical setting, the notion of an algebraic signature over a

base category reduces simply to an endofunctor on that category.

Definition 1. A functorical signature on a category C is an endofunctor Σ : C → C.

Definition 2. A Σ-algebra for a functorial signature Σ is a pair (X,s) of an object

X ∈ C and a map s : ΣX→ X ∈ C.

3.2.2 The Category of Σ-Algebras

Familiar from mathematics are the notions of homomorphisms of monoids, groups

and rings. From a set-theoretic perspective, these are functions between carrier sets

that, in some technical sense, preserve the underlying algebraic structure. For a

concrete example, consider the monoids A = (A,⊗A, eA) and B = (B,⊗B, eB). Taking

some function h : A→ B ∈ Set, we say that h is a homomorphism (of monoids) so long

as

h(eA) = eB

and for all x,y ∈ A,

h(x⊗A y) = h(x)⊗B h(y)

This definition generalises neatly to our set-theoretic notion of an algebraic

signature. In particular, given an algebraic signature Σ = (O, [−]), Σ-algebras

X = (X,~−�X) & Y = (Y ,~−�Y ), and a function h : X → Y ∈ Set, we say that h is a

homomorphism (of Σ-algebras) if, for all f ∈ O and xi ∈ X,

h(~f �X(x1, ...,x[f ])) = ~f �Y (h(x1), ...,h(x[f ]))

Notice that this is equivalent to asserting that

h ◦ ~−�X = ~−�Y ◦ Σ̄h

Lifting this condition to functorial signatures gives rise to the following categorical

notion of a homomorphism of algebras.

Definition 3. A homomorphism (of Σ-algebras) (X,s)→ (Y ,t) is a map h : X→ Y with

the property that the following commutes as a diagram in C.
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ΣX X

ΣY Y

s

hΣh

t

It is quick to verify that this definition of homomorphism inherits identities

and composition from C. Thus, we obtain a category AlgΣ of Σ-algebras and their

homomorphisms. Observe that we always have a functor UΣ : AlgΣ→ C (the forget-
ful functor) mapping each Σ-algebra (X,s) to its carrier object X.

3.2.3 Equational Systems

When defining an equational theory Θ, such as that of groups, we do so by providing

a signature Σ alongside a set of (first-order) equations, which any model of this

theory is expected to satisfy. Such equations are presented as pairs of terms over Σ,

containing variables drawn from a set V (i.e., elements of the set TΣ(V )). A model of

Θ is then a Σ-algebra X for which any evaluation of such a pair yields an identity. To

reflect this categorically, Fiore & Hur develop a general, categorical notion of term,

from which we can derive notions of equation and satisfaction.

In particular, Fiore & Hur observe that, in a set-theoretic setting, given some Σ-

algebra (X,~−�X), any term t ∈ TΣ(V ) determines a map ~t�X : XV → X, sending each

context γ to the interpretation of t under γ in X. However, as ΓV = (−)V : Set→ Set
is itself a polynomial endofunctor, we have determined a new algebraic signature

ΓV , and a ΓV -algebra (X,~t�X).

This gives us an interesting perspective on the nature of contexts. Specifically,

given (X,~−�X), ΓVX determines the set of all X-valued contexts over V . Further-

more, given a homomorphism h : (X,~−�X) → (Y ,~−�Y ), we interpret ΓV h as the

function sending each context γ ∈ ΓVX to the context h ◦ γ ∈ ΓV Y . From this, it

should be clear that the following will commute,

ΓVX X

ΓV Y Y

ΓV h

~t�X

h

~t�Y

Or, equivalently, any homomorphism of Σ-algebras is also a homomorphism of ΓV -
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algebras. Thus, any term t ∈ TΣ(V ) determines a functor t̄ : AlgΣ→ AlgΓV
, sending

each (X,~−�X) to (X,~t�X) while preserving carrier objects and homomorphisms.

Working backwards from here, Fiore & Hur arrive at the following categorical

notions of term and equational system.

Definition 4. A functorial term C : ΣB Γ ` T consists of an endofunctor Γ on C (the

functorial context) and a functor T : AlgΣ → AlgΓ such that UΓ ◦ T = UΣ (i.e., T

preserves carrier objects and homomorphisms).

Definition 5. An equational system Θ = (C : Σ B Γ ` L = R) is a parallel pair of

functorial terms L,R : AlgΣ→AlgΓ over a base category C.

Note, while it appears that this definition only captures equational systems

with a single equation, Fiore & Hur demonstrate that any system of equations can

be captured as a single pair of functorial terms (so long as C supports indexed

coproducts).

Definition 6. A model of an equational system Θ = (C : Σ B Γ ` L = R) is any

Σ-algebra (X,s) such that L(X,s) = R(X,s).

Taking the equaliser of L and R, we obtain the category of Θ-models AlgΘ ,

AlgΘ AlgΣ AlgΓ

D

R

LjΘ

∃!F̄
F

Critically, AlgΘ is a sub-category of AlgΣ, meaning that we can treat homomor-

phisms of algebras and models uniformly. Moreover, AlgΘ inherits a forgetful func-

tor UΘ = UΣ ◦ jΘ : AlgΘ → C, obtained by precomposing UΣ onto the embedding

jΘ .

3.2.4 Free Algebras

Another key idea from universal algebra is the notion of a free algebra. From a

set-theoretic point of view, the free Σ-algebra over a set of generators V is the set

of terms TΣ(V ), equipped with the algebraic structure it inherits from its inductive

construction. However, the key property that free algebras enjoy is that each map
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from their set of generators to the carrier of another algebra induces a unique

homomorphism. Hence, the following categorical generalisation.

Definition 7. Given an object X ∈ C, a free Σ-algebra over X is any algebra X ′ ∈AlgΣ

equipped with a map η : X→UΣX
′, such that, for all Y ∈AlgΣ and f : X→UΣY ∈ C,

there exists a unique homomorphism f̄ : X ′→ Y with UΣf̄ ◦ η = f .

The following diagram makes this explicit,

X ′ UΣX
′ X

Y UΣY

∃!f̄ UΣf̄

η

f

It is not difficult to see that by naturalising this picture in X, renaming X ′ to FΣX,

we obtain the characterisation of a left adjoint to UΣ.

FΣX UΣ(FΣX) X

Y UΣY

∃!f̄ UΣf̄

ηX

f

Thus, a free Σ-algebra over X, if one exists, is unique up to isomorphism and AlgΣ

has all free Σ-algebras precisely when UΣ has a left adjoint FΣ. It is worth noting

that this adjunction generalises the the familiar free-forgetful adjunctions enjoyed

by algebraic structures in Set.

3.2.5 Free Models

From this notion of a free algebra we can further derive the notion of a free model.
In set-theoretic universal algebra, free models of a theory can be obtained by taking

the quotient of a free algebra by the equivalence on terms induced by the theory’s

equational logic. However, in a categorical setting, the realisation that the essential

properties of free algebras follow from the universal property they satisfy leads to a

direct definition of free models by way of extending the adjunction FΣ a UΣ to UΘ
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as pictured,

AlgΘ AlgΣ C
FΣ

jΘ

rΘ

UΣ

UΘ=UΣ◦jΘ

FΘ=rΘ◦FΣ

a a

It is a standard result in category theory that the left-adjoint to an inclusion is a

quotient map, thus preserving our intuition from equational theories defined over

Set.

3.3 Free Extensions

Using the definitions given in §3.2, we can now give a precise definition of free

extensions for an equational system.

Definition 8. In an equational system Θ = (C : ΣB Γ ` L = R), given V ∈ C, the free
extension of X ∈ AlgΘ by V , if it exists, is the coproduct X[V ] = X + FΘV , where

FΘ aUΘ .

From this definition, it follows that whenever AlgΘ has binary coproducts, if UΘ

has a left adjoint, (−)[=] : AlgΘ×C →AlgΘ lifts to a bifunctor. In such situations, we

say that ‘AlgΘ has all free extensions’. It is also worth noting that, when authoring a

solver for Θ, it is this bifunctor that we will need to provide.

3.3.1 Normalisation by Evaluation

At this point, it is reasonable to question the motivation for defining free extensions

in this abstract setting. However, doing so not only introduces free extensions to

the world beyond simple first-order equational theories, but further suggests deep

connections between free extensions and more studied techniques, such as normali-
sation by evaluation (NbE).

The applications of NbE are far-reaching, with notable examples including de-

ciding the word problem for simply-typed λ-calculus with coproducts[2], and com-

puting isomorphisms of recursive polynomial types[7]. Broadly speaking, NbE is a

family of techniques for discovering normal forms in various λ-calculi. Rather than

rewriting, under NbE, terms are reflected into a non-standard denotational seman-

tics in order to determine normal forms. Once found, normal forms are then reified,
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recovering equivalent canonical terms.

From this informal description, a connection between NbE techniques and free

extensions is clear: both enable normalisation in a family of equational systems

by reflecting syntax into a non-standard denotational semantics and then reifying

provably equivalent syntax. Despite this, the connection between NbE and free

extensions is yet to be seriously acknowledged, as free extensions have, thus far, only

been applied to first-order equational theories which cannot encode the variable

binding constructs found in λ-calculi.

However, the class of equational systems discussed in this chapter is broad

enough to capture a variety of λ-calculi. In particular, these definitions cover the

second-order equational logics introduced by Fiore & Hur in [9], and further devel-

oped by Fiore & Mahmoud in [10]. Unlike first-order theories, second-order theories

can support variable-binding constructs, and can therefore be used to present theo-

ries such as the simply-typed λ-calculus – or, equivalently, the equational theory of

cartesian-closed categories.

As such, this work conjectures that existing NbE techniques can be reinter-

preted as free extensions in the category of cartesian-closed categories (or similar).

However, constructing specific instances of this correspondence, and investigating

the extent to which free extensions generalise NbE techniques is left as future work.

3.4 Summary

To summarise, this chapter demonstrated that a frequently exploited approach to

deriving algebraic identities led naturally to a universal property in the category of

models of an equational theory. Specifically, we saw that algebras of normal forms

are, in general, coproducts with free models (free extensions).

Building on this, the latter half of this chapter described a broad class of equa-

tional systems, introduced by Fiore & Hur, to which the notion of free extensions

generalises. In doing so, this chapter developed a strong theoretical basis, serving as

the foundation for the formalisation described in the next chapter. Moreover, tak-

ing free extensions into this abstract setting pointed to a deep connection between

normalisation-by-evaluation techniques and free extensions for second-order equa-

tional theories. As such, it is important to recognise that while the coming chapter

makes a number of simplifying assumptions as to the family of equational theories

it considers, this is not a consequence of a theoretical limitation of the techniques

described.



4 — Formalisation
This chapter describes a formalisation of free extensions in the Agda proof assistant.

While the definition of free extensions given in the previous chapter covers a variety

of exotic equational systems, this formalisation is limited to finitary, mono-sorted

algebraic structures (i.e., structures built from a collection of untyped operators of

finite arity). However, as illustrated by the previous chapter, this restriction is not a

consequence of a theoretical limitation of free extensions, but was adopted from the

outset to manage this project’s complexity, with generalisations left as future work.

Overview §4.1 states and justifies the key design decisions made when beginning

the development of the formalisation described in this chapter. These decisions ul-

timately led to the need for (and implementation of) a lightweight formalisation

of universal algebra, tailored to suit this project. §4.2 presents the algebraic com-

ponent of this formalisation, while §4.3 discusses its equational aspects. Building

on this foundation, §4.4 describes the formal specification of free extensions, stat-

ing the key results enabling proof synthesis. Finally, §4.5 concludes with a brief

summary.

4.1 Design Decisions

This formalisation adopts Agda’s ‘--without-K --safe --exact-split’ configu-

ration. This is a strict configuration which enforces strong guarantees. The first

flag, ‘--without-K’, disables the type-checking rules that would make the axiom

K typeable, thus guaranteeing intensionality. The second flag ‘--safe’, disables a

host of features which can introduce inconsistencies to Agda’s logic, such as pos-

tulates. The third flag, ‘--exact-split’, ensures that all pattern matching holds

definitionally. As the formalisation described here serves as the foundation for a

broadly applicable tactic, it is required to be compatible with a range of Agda con-

figurations. However, Hu & Carette observe in [13] that ‘--without-K --safe’ is a

widely compatible configuration, as it retains compatibility with both the ‘--with-

K’ (propositionally extensional) and ‘--cubical’ (CuTT) Agda variants.

When beginning this work, I investigated existing formalisations of universal

algebra with the hope of reusing them: in particular, DeMeo’s UALib[5] and Gun-

ther et al.’s formalisation[11]. However, DeMeo’s reliance on a large, unstable Agda

library (namely, Escardó’s TypeTopology[6]) made it unsuitable from a compatibil-

ity perspective. Conversely, while Gunther et al.’s formalisation depends exclusively

on Agda’s standard library, it goes to great lengths to capture multi-sorted algebras

and conditional-equational theories in full generality, making it unnecessarily dif-

29
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ficult to work with when specialising to mono-sorted equational theories. Thus, I

settled on building a ground-up formalisation of the fragment of universal alge-

bra required to specify finitary, mono-sorted free extensions, relying only on Agda’s

standard library.

To support the specification of free extensions (i.e., coproducts with free mod-

els), an algebra formalisation must provide a construction of the free model of an

arbitrary equational theory. However, as discussed in §3.2.4, this requires us to pro-

vide a left adjoint to the forgetful functor. While the category of sets admits this

construction via the quotient of a free algebra by a theory’s equational logic, the cat-

egory of MLTT types does not admit arbitrary quotients, making a direct construc-

tion impossible. Thus, rather than defining algebraic structures over MLTT types

directly, I define all structures over setoids (i.e., sets equipped with an equivalence

relation – ‘book equality’[3]), as is done in Agda’s standard library; thus, allowing

quotients to be emulated with a change of equivalence.

The final design decision relates to the hierarchy of universes described in

§2.1.5. In particular, many interesting algebraic structures inhabit universes other

than U0. For example, the cartesian product of types, A×B, in any universe Ui forms

a commutative semigroup up to equivalence of types, e.g., A × B ' B ×A. Synthe-

sising proofs of these type equivalences is a compelling application of the proof

synthesis technique described by chapter 3. Thus, to avoid repeatedly formalising

algebraic structures in higher and higher universes, I elected to make definitions

my universe polymorphic. Agda supports universe polymorphism by allowing quan-

tification over universe levels (the ordinal indices of universes), but places universe-

polymorphic types in transfinite universes which cannot be quantified over, to avoid

the paradoxes touched on in §2.1.5.

4.2 Universal Algebra

This section describes my formalisation of universal algebra. The majority of the

core definitions are mono-sorted specialisations of those given by Gunther et al.,
but there are key differences in the presentation of free algebras. These definitions

are mathematically less elegant than Gunther et al.’s, but greatly simplify proofs

involving free constructions and are therefore a better fit for this use case.

4.2.1 Signatures

Under the assumption that operators are finitary and mono-sorted, an algebraic

signature is characterised by a set of operator symbols, indexed by their respective
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arities,

record Signature : Set1 where

field

ops : N→ Set

where Seti denotes the universe Ui (with Set shorthand for Set0). This characterisa-

tion of algebraic signatures is a mono-sorted specialisation of that used by Gunther

et al. and allows for convenient pattern-matching on the operators of a signature.

As a concrete example, the signature of a magma (i.e., a single binary operator)

is encoded as follows,

data MagmaOp : N→ Set where

• : MagmaOp 2

Σ-magma : Signature

Σ-magma = record { ops = MagmaOp }

4.2.2 Interpretations

Given an algebraic signature Σ, an interpretation of Σ in the set A is a function spec-

ifying the action of each of Σ’s operators on a vector whose length is the operator’s

arity,

Interpretation : Set a
Interpretation = ∀ {arity}→ (f : ops Σ arity)→ Vec A arity→ A

Here, a is a level parameter. Level parameters allow for quantification over the hier-

archy of universes, thus enabling the universe polymorphism discussed in §4.1.

An interpretation is a congruence over an equivalence so long as, given

pointwise-equivalent inputs, it yields equivalent outputs,

Congruence : Interpretation→ Set (a t `)

Congruence ~_� = ∀ {arity}

→ (f : ops Σ arity)

→ ∀ {xs ys}→ Pointwise _≈_ xs ys→ ~ f � xs ≈ ~ f � ys

4.2.3 Algebras

A setoid forms an algebra whenever we can equip it with an interpretation that

forms a congruence over this setoid’s book equality,
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record IsAlgebra (S : Setoid a `) : Set (a t `) where

field

~_� : Interpretation S
~�-cong : Congruence S ~_�

The following definition is used to conveniently bundle a setoid with a proof that it

forms an algebra,

record Algebra : Set (suc a t suc `) where

constructor algebra

field

‖_‖/≈ : Setoid a `
‖_‖/≈-isAlgebra : IsAlgebra ‖_‖/≈

When working with setoids, definitions must be polymorphic in both the universe

of carrier sets and the universe in which book equalities are defined, hence the need

for two level parameters a and `.

4.2.4 Homomorphisms

A function between carrier sets of algebras is said to be homomorphic whenever it

commutes with interpretation up to book equality in the algebra over its codomain,

Homomorphic : (S : Algebra {a} {`1}) (T : Algebra {b} {`2})

→ (‖ S ‖→ ‖ T ‖)→ Set (a t `2)

Homomorphic S T h = ∀ {arity}→ (f : ops Σ arity)

→ (xs : Vec ‖ S ‖ arity)

→ T ~ f � (map h xs) =[ T ] h (S ~ f � xs)

A homomorphism of algebras is therefore any setoid morphism (i.e., congruence –

written _{_) between carriers that is also homomorphic,

record _ _ : Set (a t b t `1 t `2) where

field

|_|→ : ‖ A ‖/≈{ ‖ B ‖/≈
|_|-hom : Homomorphic A B (Morphism.|_| |_|→)

Identities and composition are defined in the obvious way, with associativity

and unit laws proven pointwise up to book equality in the codomain of composites.

Similarly, equivalences of algebras are defined as pairs of mutually inverse homo-

morphisms, up to pointwise book equality with the identity homomorphism.
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4.2.5 Free Algebras

The set of Σ-terms over a set A is the closure of A under well-formed applications

of Σ’s operators,

data Term (A : Set a) : Set a where

atom : A→ Term A
term : ∀ {arity}→ (f : ops Σ arity)→ Vec (Term A) arity→ Term A

Given an equivalence over A, we also obtain an equivalence of terms, given point-

wise,

data _~_ : Term A→ Term A→ Set (a t `) where

atom : ∀ {x y}→ x ≈ y→ atom x ~ atom y
term : ∀ {arity xs ys} {f : ops Σ arity}

→ Pointwise _~_ xs ys
→ term f xs ~ term f ys

Thus, given a setoid with carrier A, the Herbrand universe generated by this

setoid becomes,

Herbrand : Setoid _ _

Herbrand = record { Carrier = Term A

; _≈_ = _~_

; isEquivalence = ~-isEquivalence

}

Moreover, given a setoid S, it is trivial to prove that Herbrand S forms a Σ-algebra,

thus yielding a functor Free sending a setoid to its corresponding free algebra.

However, we are generally interested in algebras of terms containing some

number of free variables. As all operators are finitary, we only ever have use for

finite sets of variables. Hence, we can assume without loss of generality that vari-

ables are finite numerals up to some maximum n. Thus, the type BT of possibly-static
elements of a set A becomes,

data BT (A : Set a) (n : N) : Set a where

sta : A→ BT A n
dyn : Fin n→ BT A n

where sta marks static elements (i.e., elements of A), and dyn marks dynamic ele-

ments (i.e., variables). Given _'_, an equivalence on A, we also obtain an equiva-

lence over elements of BT A n,



CHAPTER 4. FORMALISATION 34

data _�_ : BT A n→ BT A n→ Set (a t `) where

sta : ∀ {x y}→ x ≈ y→ sta x � sta y
dyn : ∀ {x y}→ x ≡ y→ dyn x � dyn y

This determines the setoid of atomic terms over a setoid S,

Atoms : Setoid a (a t `)

Atoms = record { Carrier = BT (Setoid.Carrier S) n
; _≈_ = _�_

; isEquivalence = �-isEquivalence

}

As such, algebras of terms containing free variables become free algebras over a

setoid of atoms.

As shorthand, F n denotes the finitely generated algebra with n generators. To

allow for definitions made for arbitrary algebras of atoms to be reused for finitely

generated algebras, I define F as follows,

F : N→ Algebra

F = Free ◦ Atoms (PE.setoid ⊥)

where PE.setoid sends a set to the setoid it forms under _≡_, and ⊥ denotes the

empty type.

Given the understanding of variables described above, an environment (con-

text) over an algebra A reduces to a function sending elements of a finite set to

elements of A,

Env : (A : Algebra {a} {`1})→N→ Set _

Env A n = Fin n→ ‖ A ‖

Furthermore, by the universal property of free algebras, given any environment θ,

there is a unique homomorphism inst θ,

inst : ∀ {n} (A : Algebra {a} {`1})→ Env A n→ F n A

instantiating terms in F n in the algebra over which θ is defined.

4.2.6 Quotient Algebras

Working with setoids, quotient algebras can be defined straightforwardly. Given a

setoid S with carrier A, the quotient of S by an equivalence _≈_ is the setoid induced
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by A under _≈_. Note, however, a quotient in this sense will only induce the inclu-

sion we require when _≈_ is coarser than S’s book equality (i.e., S’s book equality is

contained in _≈_).

If S is the carrier of an algebra, we can take the quotient of this algebra by _≈_

so long as this algebra’s interpretation is a congruence over _≈_. In particular, the

resulting algebra has carrier S / _≈_ but retains the original algebra’s interpretation.

My implementation encodes these ideas directly alongside a proof that this con-

struction satisfies the usual universal property of quotient objects.

4.3 Equational Theories

This section builds on the definitions given in the previous section, in order to sup-

port the specification of equational theories. Again, many of the core definitions

are mono-sorted specialisations of those given by Gunther et al., further dropping

support for conditional equations.

4.3.1 Equations

An equation of Σ-algebras of arity n (i.e., containing at most n free variables) is

defined as a pair of terms in the finitely generated algebra F Σ n,

Eq : (Σ : Signature)→ (n : N)→ Set

Eq Σ n = ‖ F Σ n ‖ × ‖ F Σ n ‖

As examples, making use of syntax extensions to aid readability, associativity and

commutativity of a binary operator can be encoded as follows,

comm : ops Σ 2→ Eq Σ 2

comm • = 〈 a 〉 〈 • 〉2 〈 b 〉 , 〈 b 〉 〈 • 〉2 〈 a 〉

assoc : ops Σ 2→ Eq Σ 3

assoc • =

(〈 a 〉 〈 • 〉2 〈 b 〉) 〈 • 〉2 〈 c 〉 , 〈 a 〉 〈 • 〉2 (〈 b 〉 〈 • 〉2 〈 c 〉)

4.3.2 Theories

An equational theory is comprised of an algebraic signature and a set of equations.

However, to allow pattern matching on equations, I separate equation names from

their presentations as pairs of terms,



CHAPTER 4. FORMALISATION 36

record Theory : Set1 where

field

Σ : Signature

eqs : N→ Set

_~_�e : ∀ {arity}→ eqs arity→ Eq Σ arity

For example, commutative semigroups satisfy two equations: commutativity

(in two variables), and associativity (in three). CSemigroupEqs captures this induc-

tively as an indexed family of equation symbols,

data CSemigroupEq : N→ Set where

comm : CSemigroupEq 2

assoc : CSemigroupEq 3

These symbols are given interpretations using the equations defined in §4.3.1,

csemigroup-eqs : ∀ {n}→ CSemigroupEq n→ Eq Σ-magma n
csemigroup-eqs comm = L.comm •
csemigroup-eqs assoc = L.assoc •

thus yielding a presentation of the theory of commutative semigroups,

Θ-csemigroup : Theory

Θ-csemigroup = record { Σ = Σ-magma

; eqs = CSemigroupEq

; _~_�e = csemigroup-eqs

}

4.3.3 Models

An algebra A partially satisfies an equation, in an environment θ, if the instantia-

tions of the left and right-hand sides of this equation under θ are equal up to book

equality,

_�〈_〉_ : ∀ {n}→ (A : Algebra {a} {`})

→ Env A n→ Eq Σ n→ Set `

A �〈 θ 〉 (lhs , rhs) =

| inst A θ | lhs =[ A ] | inst A θ | rhs

A is said to satisfy an equation if it partially satisfies the equation in any environ-

ment,
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_�_ : ∀ {n}→ Algebra {a} {`}→ Eq Σ n→ Set (a t `)

_�_ S eq = ∀ θ→ S �〈 θ 〉 eq

Given an equational theory Θ with signature Σ, an algebra A models Θ if it

satisfies all of Θ’s equations,

Models : Algebra {a} {`}→ Set (a t `)

Models S = ∀ {n}→ (eq : eqs Θ n)→ S � (Θ ~ eq �e)

Thus, a setoid S is a model of Θ whenever it forms a Σ-algebra which models Θ,

record IsModel : Set (a t `) where

field

isAlgebra : IsAlgebra S
models : Models (algebra S isAlgebra)

Again, it is convenient to bundle a setoid together with a proof that it forms a model

of a given theory,

record Model : Set (suc a t suc `) where

field

‖_‖/≈ : Setoid a `
isModel : IsModel ‖_‖/≈

4.3.4 Free Models

Given a theory Θ and an algebra A matching its signature, the following induc-

tive definition describes syntactic equivalence up to Θ when applied to A (without

computation),

data _u_ : ‖ A ‖→ ‖ A ‖→ Set (a t `) where

refl : ∀ {x}→ x u x
sym : ∀ {x y}→ x u y→ y u x
trans : ∀ {x y z}→ x u y→ y u z→ x u z
inherit : ∀ {x y}→ x =[ A ] y→ x u y
cong : ∀ {n}→ (f : ops (Σ Θ) n)

→ ∀ {xs ys}→ Pointwise _u_ xs ys
→ A ~ f � xs u A ~ f � ys

axiom : ∀ {n}→ (eq : eqs Θ n)→ (θ : Env A n)

→ | inst A θ | (proj1 (Θ ~ eq �e))
u | inst A θ | (proj2 (Θ ~ eq �e))
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While A’s book equality does not necessarily reflect this equivalence, we can ‘force’

A to model Θ synthetically by quotienting,

Synthetic : Model

Synthetic = record { ‖_‖/≈ = ‖ A ‖/ _u_

; isModel = isModel

}

Applied to finitely generated algebras, this quotient yields a synthetic construction

of the finitely generated models of a theory,

J : N→ Model

J = Synthetic ◦ F

4.3.5 Coproducts

Coproducts of models are specified directly in terms of the following data,

record IsCoproduct : Setω where

field

inl : ‖ A ‖a ‖ A+B ‖a
inr : ‖ B ‖a ‖ A+B ‖a

_[_,_] : ∀ {d `4} (X : Model {d} {`4})

→ ‖ A ‖a ‖ X ‖a
→ ‖ B ‖a ‖ X ‖a
→ ‖ A+B ‖a ‖ X ‖a

For the sake of brevity, this reproduction omits the fields commute1, commute2 and

universal. However, these fields are present in the implementation, and enforce that

_[_,_] commutes as it should and is the unique such map (up to pointwise equiva-

lence).

4.4 Free Extensions

Using the construction of finitely generated models and the definition of coproducts

given in the previous section, it is now possible to give a formal definition of finitary,

mono-sorted free extensions.

An extension for a theory Θ is any function from models and naturals to models,

Extension : Setω

Extension = ∀ {a} {`}→ Model {a} {`}→N→ Model {a} {a t `}
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An extension is free if it sends every model A and natural n to the coproduct of A
with J n,

IsFreeExtension : Extension→ Setω

IsFreeExtension _[_] =

∀ {a `} (A : Model {a} {`}) (n : N)→ IsCoproduct A (J n) (A [ n ])

Thus, a free extension is simply an extension bundled with a proof that it is free,

record FreeExtension : Setω where

field

_[_] : Extension

_[_]-isFrex : IsFreeExtension _[_]

Given an arbitrary model A of a theory Θ, the quotient of the algebra Free

(Atoms ‖ A ‖/≈ n) by semantic equivalence up to Θ, as defined in §4.3, very nearly

yields a free extension, but fails to permit reductions of static sub-terms. Extend-

ing the inductive definition of semantic equivalence with the following constructor

resolves this issue,

evaluate : ∀ {n xs}→ (f : ops (Σ Θ) n)

→ term f (map |inl| xs) ≈ |inl| (A ~ f � xs)

allowing for the construction of synthetic free extensions as quotients. Thus, for any

theory Θ, we have a free extension SynFrex Θ, the synthetic free extension, whose

carrier is the setoid of partially static terms over A.

Given any two free extensions for a theory Θ, _[_,_]1 & _[_,_]2, a model A and a

natural n, we have the following maps,

to : ‖ A [ n ]2 ‖a ‖ A [ n ]1 ‖a
to = (A [ n ]1) [ inl1 , inr1 ]2

from : ‖ A [ n ]1 ‖a ‖ A [ n ]2 ‖a
from = (A [ n ]2) [ inl2 , inr2 ]1

It is a standard result that these maps must be mutually inverse (up to book equal-

ity). Thus, we have an equivalence,

iso : ‖ A [ n ]1 ‖a ' ‖ A [ n ]2 ‖a

Given an arbitrary free extension X, instantiating this equivalence for X and

the synthetic free extension yields maps,
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norm = to X SynFrex A n
syn = from X SynFrex A n

with norm corresponding to reflection and syn corresponding to reification. More-

over, given an environment θ over an algebra A, there is always a reduction map

from a synthetic free extension of A back into A,

reduce : (θ : Env ‖ A ‖a n)→ ‖ A [ n ]s ‖a ‖ A ‖a
reduce θ = A [ id , interp A θ ]s

Piecing these terms together, we obtain a term corresponding to the proof syn-

thesis technique described by chapter 3,

frexify : ∀ {lhs rhs : Term (BT ‖ A ‖ n)}

→ | norm | lhs ∼∼∼ | norm | rhs
→ | reduce θ | lhs ≈ | reduce θ | rhs

In particular, given an arbitrary theory Θ, a model A and two terms over A contain-

ing at most n free variables, so long as the reflections of these terms are equivalent in

some free extension of Θ, their reductions are equivalent in A for any environment.

4.5 Summary

To summarise, this chapter described a formalisation of free extensions for finitary,

mono-sorted algebras, outlining key design decisions and their justifications. As

discussed in §4.1, the category of MLTT types does not support the direct construc-

tion of general quotients and, as such, free and finitely generated models of arbitrary

equational theories cannot be constructed without the use of an embedding – in this

case, setoids.

However, using setoids, I successfully constructed a framework for the spec-

ification of free extensions and, although not discussed in this chapter, using this

framework, I was able to implement and verify free extensions for semigroups and

commutative semigroups. As the focus of this work is the meta-theory of free exten-

sions, the details of these implementations are omitted. However, for the interested

reader, their designs are described in detail in [20]. Furthermore, several examples

using these extensions are exhibited in the coming chapter.



5 — Utilising Reflection
The previous chapter described the development of a formalisation of free exten-

sions in Agda, ultimately yielding a term describing the proof synthesis technique

outlined in §3.1 – namely, frexify. However, in isolation, frexify is too impractical to

use, as it requires the abstract syntax of each side of an equation to be spelled out

before it can be applied. For non-trivial expressions, providing this syntax by hand

is prohibitively time consuming, and does nothing but directly duplicate the term

structure already present in the original expressions. The aim of this chapter is to

describe how these issues are overcome using Agda’s proof reflection system. Specif-

ically, this chapter discusses the implementation of a tactic, capable of synthesising

calls to frexify without requiring the syntax of terms to be spelled out explicitly.

However, Agda’s reflection system is limited in a variety of ways. For example,

the type it uses to encode terms is not dependent in any way, and as such, tactic

programming is highly error prone. Thus, despite the tactic consisting of no more

than around 500 lines of Agda, it was by far the most difficult component of the

project to implement. Moreover, this code conveys little about its behaviour, partic-

ularly as its types are so uninformative. Thus, rather than picking apart a collection

of cryptic macro snippets, this chapter restricts its attention to providing a concep-

tual overview of the tactic (§5.1) and exhibiting some examples of it in use (§5.2),

concluding with a brief summary (§5.3).

5.1 Conceptual Overview

The approach taken to synthesising calls to frexify is relatively straightforward: first,

we are given the tactic’s goal in the form of an ununified meta-variable, alongside

a user-provided free extension and model. By querying the type-checker for the

type of this goal, we learn the type the synthesised proof term must land in. Typi-

cally, this will start with a number of universal quantifiers, which are systematically

removed to yield an equation.

With an equation in hand, we can extract the raw syntax of its left and right-

hand sides. An open sub-term detection algorithm then scans over this syntax,

building up the single set of open sub-terms of the equation. This algorithm con-

siders a term to be open, whenever its type is equal to the carrier type of the user-

provided model and it contains one or more non-canonical sub-terms (e.g., a vari-

able). The cardinality of the set of open sub-terms determines the number of vari-

ables we freely extend by.

Once the set of open sub-terms has been identified, we can build the abstract
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syntax of the two sides of the equation. This is done in the obvious depth-first way,

but we must make sure to send any open sub-term to a single dynamic atom, and

given multiple occurrences of the same open sub-term, ensure it is sent the same

dynamic atom each time. The key remaining question is how operators are identi-

fied. However, by inspecting the user-provided model’s signature, we can grab the

constructors of its set of operator symbols. Taking the image of these symbols under

the model’s interpretation and normalising, we obtain syntactic representations of

the definitions underlying the model’s interpretation. A simple parser can then scan

each side of the equation recursively, looking for fragments matching the definition

of an operator, thus identifying the abstract syntax.

Once the syntax for the left and right-hand sides has been deduced, we convert

the set of open sub-terms into an environment, and apply frexify to the two terms

and this environment, assuming that the reflection of the two terms into the free

extension will yield judgementally equal representatives. We wrap the resulting

call to frexify with binders matching the quantifiers removed when extracting the

original equation, and then unify the result with the goal meta-variable.

5.2 Examples

With an overview of the tactic given, we now turn our attention to some examples.

First, returning to the example used throughout chapters 2 & 3, the tactic, fragment,

can be instantiated with a free extension for commutative semigroups to synthesise

a proof,

frexified : ∀ {x y}→ (2 + x) + (y + 3) ≡ x + (y + 5)

frexified = fragment CSemigroupFrex +-csemigroup

Taking things a little further, in the following example, the tactic is required to

correctly identify the applications f 3, f x and f (f 2) as open sub-terms and send

each to a single dynamic atom, as discussed in §5.1,

symbols : ∀ {f : N→N} {x y}

→ (2 + f x) + (y + f 3) + f (f 2) ≡ (1 + f x) + (1 + y) + (f 3 + f (f 2))

symbols = fragment CSemigroupFrex +-csemigroup

The tactic is well-behaved in any context in which it can infer the left and right-

hand sides of its goal. In particular, this means that the tactic can be dropped into

reasoning-style proofs naturally,

+-inner : ∀ {m n k}→ k * (m + 2) + k * (3 + n) ≡ k * (m + 5 + n)

+-inner {m} {n} {k} = begin
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k * (m + 2) + k * (3 + n)

≡〈 sym (*-distribl-+ k (m + 2) (3 + n)) 〉
k * ((m + 2) + (3 + n))

≡〈 cong (k *_) (fragment SemigroupFrex +-semigroup) 〉
k * (m + 5 + n)

�

However, this example also demonstrates the tactic’s extensibility, as in this in-

stance, a free extension for semigroups is used in place of the free extension for

commutative semigroups used in the previous two examples.

These final few examples demonstrate the power of making the entire frame-

work universe polymorphic as discussed in §4.1. In particular, the following four

proofs witness bijections in Set, again using a free extension for semigroups,

×-assoc1 : ∀ {A B C : Set}→ (A × (B × C))↔ ((A × B) × C)

×-assoc1 = fragment SemigroupFrex ×-semigroup

×-assoc2 : ∀ {A B C : Set}→ ((A × B) × (B × C))↔ (A × (B × B) × C)

×-assoc2 = fragment SemigroupFrex ×-semigroup

]-assoc1 : ∀ {A B C : Set}→ (A ] (B ] C))↔ ((A ] B) ] C)

]-assoc1 = fragment SemigroupFrex ]-semigroup

]-assoc2 : ∀ {A B C : Set}→ ((A ] B) ] (B ] C))↔ (A ] (B ] B) ] C)

]-assoc2 = fragment SemigroupFrex ]-semigroup

Notice, too, that these examples demonstrate the applicability of this proof synthe-

sis framework to arbitrary equivalences. In this scenario, as bijection (_↔_) forms

an equivalence over Set, we can talk about equality of types up to bijection, which

the framework handles easily. Moreover, as the entire framework is constructive,

these examples actually compute bijections.

5.3 Summary

In summary, while conceptually simple, constructing the tactic was a serious chal-

lenge. However, with it, we are able to synthesise an enormous variety of proofs,

using any free extension with minimal effort. The key point here is that this tactic

entirely eliminates the need for piece-meal proof-reflection enhancements for alge-

braic solvers: this single tactic understands enough about algebra to extract syntax

trees from terms in any equational theory covered by the framework.



6 — Conclusion
This dissertation described the design and implementation of a tactic for the Agda

proof assistant, capable of synthesising proofs of algebraic identities. Built on a

formalisation of a class of mathematical constructions known as free extensions,

this tactic enjoys a number of desirable properties:

Simple The tactic is simple to use. In all contexts, use of the tactic reduces to

identifying a free extension for a theory, and the model of that theory to which

the tactic’s goal pertains. All other information is inferred automatically from

the inferred type of this goal.

Flexible Leveraging proof reflection, the tactic is able to operate in a variety of con-

texts, including reasoning environments. Moreover, as the tactic is built on a

universe-polymorphic formalisation of universal algebra, it is able to discover

algebraic identities in types inhabiting any universe at a finite level.

Complete By construction, the proof synthesis technique described in this work is

complete, in the sense that given any two provably equivalent terms in some

algebraic theory and an appropriate free extension, it is guaranteed to discover

an equivalence.

General As a consequence of the choice of Agda configuration within which free

extensions are specified, the tactic is able to operate in a wide variety of Agda

configurations, including Agda’s propositionally extensional and cubical vari-

ants.

Extensible By providing a general-purpose framework for the specification of fini-

tary, mono-sorted free extensions, the library described in this work permits

end-users to author custom free extensions, without altering the library’s in-

ternals. Moreover, the design of the tactic guarantees compatibility with any

such extension, allowing bespoke algebraic solvers to leverage proof reflection

automatically.

6.1 Future Work

The developments described in this dissertation leave many interesting avenues for

future work. First and foremost, implementing a broader collection of free ex-

tensions is an obvious next step. Yallop et al. have already described free exten-

sions for a host of mono-sorted algebraic structures including monoids, groups, and

rings[20]. Reconstructing these free extensions within the framework set out by this

dissertation, not only yields powerful proof synthesis tools, but further enables the

formal verification of these extensions, demonstrating the correctness of the alge-
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braic optimisations made in [20].

From a proof synthesis perspective, there are still a number of opportunities

to improve on the work described here. For example, closer integration with Agda’s

type-checker could allow for terms to be identified with elements of a free extension

automatically, and therefore treated up to algebraic equivalence without the need

to invoke a tactic explicitly. A more primitive form of this would be to retain the

tactic, but make it aware of a collection free extensions, selecting from among them

based on the type-classes of operators in its goal.

Finally, as illustrated by §3.3, free extensions generalise to a much broader class

of algebras than those characterised by the framework implemented as part of this

work. Thus, a generalisation of the algebraic foundations of this work would al-

low for the specification and verification of free extensions for more exotic equa-

tional systems, with examples including multi-sorted algebras, infinitary algebras

and second-order algebras. Given the observations made in §3.3.1 regarding the

possible connection between normalisation-by-evaluation techniques and free ex-

tensions for second-order algebras, research along these lines is likely to yield deep

insights into both techniques.
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