You might not need your garbage collector**
An introduction to ASAP

Nathan Corbyn

University of Oxford

21st June 2022

Outline

Motivation
Memory management a la C
Automatic garbage collection
Regions & ownership

ASAP from space
Liveness analysis
Modelling the heap
Naive access analysis
Generating cleaning code

ASAP in practice
Fixing fixpoints
Dealing with aliasing
Accuracy

Conclusion & future work

Memory management a la C

Memory management a la C

“Trust me — I'm a programmer.”

Memory management a la C

“Trust me — I'm a programmer.”

“Process terminated with signal SIGSEGV"

malloc() & free()

int* x = (int*) malloc(sizeof(int) * 32);
/7.

free(x);

Double free()

int* x = (int*) malloc(sizeof (int) * 32);
/7

free(x);

/7

free(x); // Whoops

Use after free()

int* x = (int*) malloc(sizeof (int) * 32);
/7

free(x);

/7

printf ("%d", x[41); // Whoops

No free()

int* x = (int*) malloc(sizeof(int) * 32);
/7.

// Whoops?

Automatic garbage collection

Automatic garbage collection

> Automate the problem away

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically
» Various approaches & techniques

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically
» Various approaches & techniques
» Reference counting

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically
» Various approaches & techniques

» Reference counting
» Tracing

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically
» Various approaches & techniques

» Reference counting
» Tracing
» Hybrid

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically
» Various approaches & techniques

» Reference counting
» Tracing

» Hybrid

» Generational

Automatic garbage collection

> Automate the problem away

» Have a system monitor heap state and free automatically
» Various approaches & techniques

» Reference counting
» Tracing

» Hybrid

» Generational

» Very popular in practice

Automatic garbage collection

7 ‘state of the_ art 5
generational 6C

Regions & ownership

Regions & ownership

> Ideally: every allocation is freed exactly once

Regions & ownership

> Ideally: every allocation is freed exactly once
» Similar to linear logic

Regions & ownership

> Ideally: every allocation is freed exactly once
» Similar to linear logic
» Linear assumptions must be used exactly once

Regions & ownership

> Ideally: every allocation is freed exactly once
» Similar to linear logic
» Linear assumptions must be used exactly once

» Use the type system to enforce this invariant

Regions & ownership

fn consume(x: MyRecord) { /* ... */ }

let x = MyRecord { /* ... */ };
consume (x) ;
consume(x); // ERROR

Regions & ownership

fn borrow(y: &MyRecord) { /* ... */ }
fn consume(x: MyRecord) { /* ... */ }
let x = MyRecord { /* ... */ };

let y = &x;

borrow(y) ;

consume (x) ;
borrow(y); // ERROR

Regions & ownership

r: {

let x: MyRecord + 'r = MyRecord { /* ...

let y: &'r MyRecord = &'r x;
borrow(y) ;
consume (x) ;

}

borrow(y); // ERROR

*/ };

Regions & ownership

fn borrow<'r>(y: &'r MyRecord) { /* ... */ }

Regions & ownership

Regions & ownership

» Implemented successfully in Rust

Regions & ownership

» Implemented successfully in Rust
» Enforces rigid style

Regions & ownership

» Implemented successfully in Rust
» Enforces rigid style
» Rust provides fallbacks

Regions & ownership

» Implemented successfully in Rust
» Enforces rigid style
» Rust provides fallbacks

> Steep learning curve

As-static-as-possible (ASAP)

As-static-as-possible (ASAP)

» Introduced by Proust in 2017

As-static-as-possible (ASAP)

» Introduced by Proust in 2017

P Idea: use static analyses to approximate heap liveness and
generate appropriate freeing code

Liveness analysis

Liveness analysis

> Let's look at live-variable analysis first

Liveness analysis

/7.

let x = foo(a, b, c);
/7.

bar (x) ;

return a;

Liveness analysis

VZ

// {a, b, c}

let x = foo(a, b, ¢); // {z, o}

/).
bar (x) ;
return a;

// {a}
/7 AF

Liveness analysis

/) ... // {z, y, z, a, b}
if x == 3 {

Ve /) {z, y, z}
} else {

Ve // {a, b}

Liveness analysis

/) A}

let mut x = 0; /7 {z}
while x <= 3 { /7 {F
x = 4; // {F

} /7 AF

Liveness analysis

/) A}

let mut x = 0; /7 {z}
while x <= 3 { /7 Az}
x = 4; // {z}

} /7 AF

Modelling the heap

Modelling the heap

> Now we've covered liveness, let's try and generalise this to
heap structures

Modelling the heap

> Now we've covered liveness, let's try and generalise this to
heap structures

> We need a way to talk about the heap statically...

Paths

Paths

T:{---;F:T’;-..}
F : Path(r,7’)

(Field)

Paths

F={Firl)
F : Path(r,7’)
F= kD) 4
D : Path(r, 1)

(Field)

(Variant)

Paths

Paths

—— (Empt
€ : Path(7, 1) (Empty)

Paths

€ : Path(7, 1)

(Empty)

Paths

(Empty) p : Path(7,7)

(Star)
p* : Path(r,7)

€ : Path(7, 1)

p: Path(7,7') q: Path(7',7")

Seq.
p-q: Path(r,7") (Seq.)

Paths

(Empty) p : Path(7,7)

(Star)
p* : Path(r,7)

€ : Path(7, 1)

p: Path(7,7') q: Path(7',7")

Seq.
p-q: Path(r,7") (Seq.)

p: Path(7,7") q: Path(r,7’)
p+ q : Path(r,7")

(Alt.)

Example

type Unit = {};
type Head = { /* ... */ };
type List = Nil(Unit) + Cons(Cell);

type Cell = { head: Head, tail: List };

Example

Example

» Head
Cons - head

Example

» Head
Cons - head

» Spine
(Cons - tail)®

Example

» Head

Cons - head
» Spine

(Cons - tail)®
» Elements

(Cons - tail)” - Cons - head

Example

» Head

Cons - head
» Spine

(Cons - tail)®
» Elements

(Cons - tail)” - Cons - head

» Terminator
(Cons - tail)* - Nil

Zones

[/|p] : Stack x Heap — P(Loc)

Zones

[1e)(o,n) = {1}

@ if 7/ a value type
lla]l(o,n) =
[l (o m) {{Wa(/)(o,n)} otherwise
[llp+ q](e.n) = [Ilp](o,n) U [/|q](e,n)
Ve -allem)y=|J [Vlal(o,n)

Irellp](o,m)

Zones

Vp*1(om) = | Z

iCw

where

Zy={l}
Zit1 = U [/1pI(e.n)

I'ez;

Access analysis (very vaguely)

/). // {(ly, F.p), ...}
let x = y.F; // Az, p), ...}
/)

Generating cleaning code

Generating cleaning code

> At each program point we have the set of zones that may be
accessed

Generating cleaning code

> At each program point we have the set of zones that may be
accessed

» Looking between program points, we'll learn what we can
hope to deallocate

Generating cleaning code

Generating cleaning code

> At every program point, compute two sets:

Generating cleaning code

> At every program point, compute two sets:
» The matter set — everything we may still need

Generating cleaning code

> At every program point, compute two sets:

» The matter set — everything we may still need
» The antimatter set — everything we definitely don't need

Generating cleaning code

> At every program point, compute two sets:

» The matter set — everything we may still need
» The antimatter set — everything we definitely don't need

» Generate code to:

Generating cleaning code

> At every program point, compute two sets:

» The matter set — everything we may still need

» The antimatter set — everything we definitely don't need
» Generate code to:

» ‘Mark’ the matter set

Generating cleaning code

> At every program point, compute two sets:

» The matter set — everything we may still need

» The antimatter set — everything we definitely don't need
» Generate code to:

> ‘Mark’ the matter set
» free() anything in the anti-matter set that isn't marked

Generating cleaning code

> At every program point, compute two sets:

» The matter set — everything we may still need

» The antimatter set — everything we definitely don't need
» Generate code to:

> ‘Mark’ the matter set
» free() anything in the anti-matter set that isn't marked
» Clear the marks

Generating cleaning code

Generating cleaning code

» Various optimisations we can do

Generating cleaning code

» Various optimisations we can do
> Identify redundancy to minimise work

Generating cleaning code

» Various optimisations we can do
> Identify redundancy to minimise work
> Aggregate work across program points to minimise context
switching

Generating cleaning code

» Various optimisations we can do
> Identify redundancy to minimise work
> Aggregate work across program points to minimise context
switching
» Improve accuracy of analyses

Generating cleaning code

» Various optimisations we can do

> Identify redundancy to minimise work

> Aggregate work across program points to minimise context
switching

» Improve accuracy of analyses

>

Generating cleaning code

> Various optimisations we can do
> Identify redundancy to minimise work
> Aggregate work across program points to minimise context
switching
» Improve accuracy of analyses
>

» | like to think of the whole technique as staging your tracing
collector

Generating cleaning code

» Various optimisations we can do

> Identify redundancy to minimise work

> Aggregate work across program points to minimise context
switching

» Improve accuracy of analyses

>

» | like to think of the whole technique as staging your tracing
collector

> But — there are some key issues to deal with!

Fixing fixpoints

Fixing fixpoints

P Fixpoints aren't automatically reachable

Fixing fixpoints

P Fixpoints aren't automatically reachable

» For any finite i € w

e+p+p-ptp-p p+-+p #p*

Fixing fixpoints

P Fixpoints aren't automatically reachable

» For any finite i € w

e+p+p-ptp-p p+-+p #p*

» People who know about this would say we've violated the
ascending chain condition

Compact paths

Compact paths

| —| : Path(r,7") — CPath(7,7’)
—_——

Finite

Compact paths

| —| : Path(r,7") — CPath(7,7’)
———

Finite

» Every path has a corresponding DFA

Compact paths

| —| : Path(r,7") — CPath(7,7’)
———

Finite

» Every path has a corresponding DFA
P Idea: bound these automata by the type graph!

Compact paths

(Cons - tail)*

Cons
. Nil .
Unit ¢444i4444'Llst

tail

Cell — 22 . Head

Compact paths

(Cons - tail)®

START

l Cons

- %
(List) Cell

tail

Compact paths

Dealing with aliasing

Dealing with aliasing

» Aliasing causes problems

Dealing with aliasing

» Aliasing causes problems
> Two types:

Dealing with aliasing

» Aliasing causes problems
> Two types:
» External — two distinct zones overlap

Dealing with aliasing

» Aliasing causes problems
> Two types:

» External — two distinct zones overlap
» Internal — multiple routes to a single block

Dealing with aliasing

» Aliasing causes problems
> Two types:

» External — two distinct zones overlap
» Internal — multiple routes to a single block

» Have corresponding analyses:

Dealing with aliasing

» Aliasing causes problems
> Two types:

» External — two distinct zones overlap
» Internal — multiple routes to a single block

» Have corresponding analyses:
» Shape — identifies potential external aliasing

Dealing with aliasing

» Aliasing causes problems
> Two types:

» External — two distinct zones overlap

» Internal — multiple routes to a single block
» Have corresponding analyses:

» Shape — identifies potential external aliasing
» Share — identifies potential internal aliasing

Dealing with aliasing

» Aliasing causes problems
> Two types:

» External — two distinct zones overlap
» Internal — multiple routes to a single block

» Have corresponding analyses:
» Shape — identifies potential external aliasing
» Share — identifies potential internal aliasing

» Interdependent! | refer to them collectively as implied access

Accuracy

Accuracy

» Analysing functions and methods in isolation isn't accurate
enough for ASAP to perform well

Accuracy

» Analysing functions and methods in isolation isn't accurate
enough for ASAP to perform well

» We need to consider the interactions between procedures

Accuracy

» Analysing functions and methods in isolation isn't accurate
enough for ASAP to perform well

» We need to consider the interactions between procedures
» Enter inter-procedural analysis

Summaries & amalgamated call-contexts

Summaries & amalgamated call-contexts

» Summary — information passed from callee to caller

Summaries & amalgamated call-contexts

» Summary — information passed from callee to caller

» Amalgamated call-context — information passed from callers
to callee

Summaries & amalgamated call-contexts

fn foo(a: u64, b: ubd, c: ubd) -> u6d {

// {a, b, c}
let w=a+ b+ c; /7 {w}
W /) A}

Summaries & amalgamated call-contexts

fn foo(a: u6b4, b: ub4d, c: ubd) -> u6d {

/7 {F
let w=a+ b + c; /7 {F
W /) {F

Summaries & amalgamated call-contexts

fn foo(a: u6b4, b: ub4d, c: ubd) -> u6d {

/7 {F
let w=a+ b + c; /7 {F
W /) {F

}

This generalises as before!

Some thoughts

Some thoughts

» Is ASAP best understood as a data-flow analysis or an effect
system?

Some thoughts

» Is ASAP best understood as a data-flow analysis or an effect
system?

» Can effect polymorphism help improve accuracy?

Some thoughts

» |s ASAP best understood as a data-flow analysis or an effect
system?
» Can effect polymorphism help improve accuracy?

» Do we always need compact paths?

Conclusion & future work

Conclusion & future work

» ASAP is a long way from production

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!
» Extremely cache friendly

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!

» Extremely cache friendly
» Small binaries

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!

» Extremely cache friendly
» Small binaries
» Low memory footprint

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!

» Extremely cache friendly
» Small binaries
» Low memory footprint

» We still need:

Conclusion & future work

» ASAP is a long way from production

» But — early performance data is interesting!
» Extremely cache friendly
» Small binaries
» Low memory footprint

> We still need:

» Better understanding of semantics

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!

» Extremely cache friendly
» Small binaries
» Low memory footprint

» We still need:

» Better understanding of semantics
» High performance scanning code

Conclusion & future work

» ASAP is a long way from production
» But — early performance data is interesting!
» Extremely cache friendly
» Small binaries
» Low memory footprint
> We still need:
» Better understanding of semantics
» High performance scanning code
» Proper experimental platform

References |

[Nathan Corbyn, Practical static memory management, Tech.
report, University of Cambridge, 2020, BA Dissertation.

[@ Raphaél L. Proust, ASAP: as static as possible memory
management, Tech. report, University of Cambridge, 2017,
PhD Thesis.

	Motivation
	Memory management à la C
	Automatic garbage collection
	Regions & ownership

	ASAP from space
	Liveness analysis
	Modelling the heap
	Naïve access analysis
	Generating cleaning code

	ASAP in practice
	Fixing fixpoints
	Dealing with aliasing
	Accuracy

	Conclusion & future work

