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malloc() & free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

free(x);



Double free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

free(x);

// ...

free(x); // Whoops



Use after free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

free(x);

// ...

printf("%d", x[4]); // Whoops



No free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

// Whoops?
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Automatic garbage collection
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▶ Ideally: every allocation is freed exactly once
▶ Similar to linear logic

▶ Linear assumptions must be used exactly once
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Regions & ownership

fn consume(x: MyRecord) { /* ... */ }

let x = MyRecord { /* ... */ };

consume(x);

consume(x); // ERROR



Regions & ownership

fn borrow(y: &MyRecord) { /* ... */ }

fn consume(x: MyRecord) { /* ... */ }

let x = MyRecord { /* ... */ };

let y = &x;

borrow(y);

consume(x);

borrow(y); // ERROR



Regions & ownership

'r: {

let x: MyRecord + 'r = MyRecord { /* ... */ };

let y: &'r MyRecord = &'r x;

borrow(y);

consume(x);

}

borrow(y); // ERROR



Regions & ownership

fn borrow<'r>(y: &'r MyRecord) { /* ... */ }



Regions & ownership

▶ Implemented successfully in Rust
▶ Enforces rigid style

▶ Rust provides fallbacks

▶ Steep learning curve
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generate appropriate freeing code
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Liveness analysis

// ...

let x = foo(a, b, c);

// ...

bar(x);

return a;



Liveness analysis

// ... // {a, b, c}

let x = foo(a, b, c); // {x, a}

// ...

bar(x); // {a}

return a; // {}



Liveness analysis

// ... // {x, y, z, a, b}

if x == 3 {

// ... // {x, y, z}

} else {

// ... // {a, b}

}



Liveness analysis

// {}

let mut x = 0; // {x}

while x <= 3 { // {}

x = 4; // {}

} // {}



Liveness analysis

// {}

let mut x = 0; // {x}

while x <= 3 { // {x}

x = 4; // {x}

} // {}



Modelling the heap

▶ Now we’ve covered liveness, let’s try and generalise this to
heap structures

▶ We need a way to talk about the heap statically...
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Paths

τ = {· · · ;F : τ ′; · · · }
(Field)

F : Path(τ, τ ′)

τ = · · ·+ D(τ ′) + · · ·
(Variant)

D : Path(τ, τ ′)
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Paths

(Empty)
ϵ : Path(τ, τ)

p : Path(τ, τ)
(Star)

p∗ : Path(τ, τ)

p : Path(τ, τ ′) q : Path(τ ′, τ ′′)
(Seq.)

p · q : Path(τ, τ ′′)

p : Path(τ, τ ′) q : Path(τ, τ ′)
(Alt.)

p + q : Path(τ, τ ′)
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Example

type Unit = {};

type Head = { /* ... */ };

type List = Nil(Unit) + Cons(Cell);

type Cell = { head: Head, tail: List };



Example

▶ Head
Cons · head

▶ Spine
(Cons · tail)∗

▶ Elements
(Cons · tail)∗ · Cons · head

▶ Terminator
(Cons · tail)∗ · Nil
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Zones

Jl |pK : Stack× Heap → P(Loc)



Zones

Jl |ϵK(σ, η) = {l}

Jl |αK(σ, η) =

{
∅ if τ ′ a value type

{πα(l)(σ, η)} otherwise

Jl |p + qK(σ, η) = Jl |pK(σ, η) ∪ Jl |qK(σ, η)

Jl |p · qK(σ, η) =
⋃

l ′∈Jl |pK(σ,η)

Jl ′|qK(σ, η)



Zones

Jl |p∗K(σ, η) =
⋃
i∈ω

Zi

where

Z0 = {l}

Zi+1 =
⋃
l ′∈Zi

Jl ′|pK(σ, η)



Access analysis (very vaguely)

// ... // {(y, F.p), ...}

let x = y.F; // {(x, p), ...}

// ...



Generating cleaning code

▶ At each program point we have the set of zones that may be
accessed

▶ Looking between program points, we’ll learn what we can
hope to deallocate
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Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks
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Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!
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Fixing fixpoints

▶ Fixpoints aren’t automatically reachable

▶ For any finite i ∈ ω

ϵ+ p + p · p + p · p · p + · · ·+ pi ̸= p∗

▶ People who know about this would say we’ve violated the
ascending chain condition
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Compact paths

⌊−⌋ : Path(τ, τ ′) → CPath(τ, τ ′)︸ ︷︷ ︸
Finite

▶ Every path has a corresponding DFA

▶ Idea: bound these automata by the type graph!
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Compact paths

(Cons · tail)∗

START

Unit (List) Cell Head

Cons

tail

headNil



Compact paths

⌊ϵ⌋ = ∅

⌊α⌋ = {τ α−→ τ ′}
⌊p · q⌋ = ⌊p⌋ ∪ ⌊q⌋
⌊p + q⌋ = ⌊p⌋ ∪ ⌊q⌋

⌊p∗⌋ = ⌊p⌋



Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access
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fn foo(a: u64, b: u64, c: u64) -> u64 {

// {a, b, c}

let w = a + b + c; // {w}

w // {}

}
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▶ Small binaries
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▶ Better understanding of semantics
▶ High performance scanning code
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