
You might not need your garbage collector∗∗

An introduction to ASAP

Nathan Corbyn

University of Oxford

21st June 2022

Outline

Motivation
Memory management à la C
Automatic garbage collection
Regions & ownership

ASAP from space
Liveness analysis
Modelling the heap
Näıve access analysis
Generating cleaning code

ASAP in practice
Fixing fixpoints
Dealing with aliasing
Accuracy

Conclusion & future work

Memory management à la C

“Trust me — I’m a programmer.”

“Process terminated with signal SIGSEGV”

Memory management à la C

“Trust me — I’m a programmer.”

“Process terminated with signal SIGSEGV”

Memory management à la C

“Trust me — I’m a programmer.”

“Process terminated with signal SIGSEGV”

malloc() & free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

free(x);

Double free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

free(x);

// ...

free(x); // Whoops

Use after free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

free(x);

// ...

printf("%d", x[4]); // Whoops

No free()

int* x = (int*) malloc(sizeof(int) * 32);

// ...

// Whoops?

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically

▶ Various approaches & techniques
▶ Reference counting
▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting

▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing

▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing
▶ Hybrid

▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

▶ Automate the problem away

▶ Have a system monitor heap state and free automatically
▶ Various approaches & techniques

▶ Reference counting
▶ Tracing
▶ Hybrid
▶ Generational

▶ Very popular in practice

Automatic garbage collection

Regions & ownership

▶ Ideally: every allocation is freed exactly once
▶ Similar to linear logic

▶ Linear assumptions must be used exactly once

▶ Use the type system to enforce this invariant

Regions & ownership

▶ Ideally: every allocation is freed exactly once

▶ Similar to linear logic
▶ Linear assumptions must be used exactly once

▶ Use the type system to enforce this invariant

Regions & ownership

▶ Ideally: every allocation is freed exactly once
▶ Similar to linear logic

▶ Linear assumptions must be used exactly once

▶ Use the type system to enforce this invariant

Regions & ownership

▶ Ideally: every allocation is freed exactly once
▶ Similar to linear logic

▶ Linear assumptions must be used exactly once

▶ Use the type system to enforce this invariant

Regions & ownership

▶ Ideally: every allocation is freed exactly once
▶ Similar to linear logic

▶ Linear assumptions must be used exactly once

▶ Use the type system to enforce this invariant

Regions & ownership

fn consume(x: MyRecord) { /* ... */ }

let x = MyRecord { /* ... */ };

consume(x);

consume(x); // ERROR

Regions & ownership

fn borrow(y: &MyRecord) { /* ... */ }

fn consume(x: MyRecord) { /* ... */ }

let x = MyRecord { /* ... */ };

let y = &x;

borrow(y);

consume(x);

borrow(y); // ERROR

Regions & ownership

'r: {

let x: MyRecord + 'r = MyRecord { /* ... */ };

let y: &'r MyRecord = &'r x;

borrow(y);

consume(x);

}

borrow(y); // ERROR

Regions & ownership

fn borrow<'r>(y: &'r MyRecord) { /* ... */ }

Regions & ownership

▶ Implemented successfully in Rust
▶ Enforces rigid style

▶ Rust provides fallbacks

▶ Steep learning curve

Regions & ownership

▶ Implemented successfully in Rust

▶ Enforces rigid style
▶ Rust provides fallbacks

▶ Steep learning curve

Regions & ownership

▶ Implemented successfully in Rust
▶ Enforces rigid style

▶ Rust provides fallbacks

▶ Steep learning curve

Regions & ownership

▶ Implemented successfully in Rust
▶ Enforces rigid style

▶ Rust provides fallbacks

▶ Steep learning curve

Regions & ownership

▶ Implemented successfully in Rust
▶ Enforces rigid style

▶ Rust provides fallbacks

▶ Steep learning curve

As-static-as-possible (ASAP)

▶ Introduced by Proust in 2017

▶ Idea: use static analyses to approximate heap liveness and
generate appropriate freeing code

As-static-as-possible (ASAP)

▶ Introduced by Proust in 2017

▶ Idea: use static analyses to approximate heap liveness and
generate appropriate freeing code

As-static-as-possible (ASAP)

▶ Introduced by Proust in 2017

▶ Idea: use static analyses to approximate heap liveness and
generate appropriate freeing code

Liveness analysis

▶ Let’s look at live-variable analysis first

Liveness analysis

▶ Let’s look at live-variable analysis first

Liveness analysis

// ...

let x = foo(a, b, c);

// ...

bar(x);

return a;

Liveness analysis

// ... // {a, b, c}

let x = foo(a, b, c); // {x, a}

// ...

bar(x); // {a}

return a; // {}

Liveness analysis

// ... // {x, y, z, a, b}

if x == 3 {

// ... // {x, y, z}

} else {

// ... // {a, b}

}

Liveness analysis

// {}

let mut x = 0; // {x}

while x <= 3 { // {}

x = 4; // {}

} // {}

Liveness analysis

// {}

let mut x = 0; // {x}

while x <= 3 { // {x}

x = 4; // {x}

} // {}

Modelling the heap

▶ Now we’ve covered liveness, let’s try and generalise this to
heap structures

▶ We need a way to talk about the heap statically...

Modelling the heap

▶ Now we’ve covered liveness, let’s try and generalise this to
heap structures

▶ We need a way to talk about the heap statically...

Modelling the heap

▶ Now we’ve covered liveness, let’s try and generalise this to
heap structures

▶ We need a way to talk about the heap statically...

Paths

τ = {· · · ;F : τ ′; · · · }
(Field)

F : Path(τ, τ ′)

τ = · · ·+ D(τ ′) + · · ·
(Variant)

D : Path(τ, τ ′)

Paths

τ = {· · · ;F : τ ′; · · · }
(Field)

F : Path(τ, τ ′)

τ = · · ·+ D(τ ′) + · · ·
(Variant)

D : Path(τ, τ ′)

Paths

τ = {· · · ;F : τ ′; · · · }
(Field)

F : Path(τ, τ ′)

τ = · · ·+ D(τ ′) + · · ·
(Variant)

D : Path(τ, τ ′)

Paths

(Empty)
ϵ : Path(τ, τ)

p : Path(τ, τ)
(Star)

p∗ : Path(τ, τ)

p : Path(τ, τ ′) q : Path(τ ′, τ ′′)
(Seq.)

p · q : Path(τ, τ ′′)

p : Path(τ, τ ′) q : Path(τ, τ ′)
(Alt.)

p + q : Path(τ, τ ′)

Paths

(Empty)
ϵ : Path(τ, τ)

p : Path(τ, τ)
(Star)

p∗ : Path(τ, τ)

p : Path(τ, τ ′) q : Path(τ ′, τ ′′)
(Seq.)

p · q : Path(τ, τ ′′)

p : Path(τ, τ ′) q : Path(τ, τ ′)
(Alt.)

p + q : Path(τ, τ ′)

Paths

(Empty)
ϵ : Path(τ, τ)

p : Path(τ, τ)
(Star)

p∗ : Path(τ, τ)

p : Path(τ, τ ′) q : Path(τ ′, τ ′′)
(Seq.)

p · q : Path(τ, τ ′′)

p : Path(τ, τ ′) q : Path(τ, τ ′)
(Alt.)

p + q : Path(τ, τ ′)

Paths

(Empty)
ϵ : Path(τ, τ)

p : Path(τ, τ)
(Star)

p∗ : Path(τ, τ)

p : Path(τ, τ ′) q : Path(τ ′, τ ′′)
(Seq.)

p · q : Path(τ, τ ′′)

p : Path(τ, τ ′) q : Path(τ, τ ′)
(Alt.)

p + q : Path(τ, τ ′)

Paths

(Empty)
ϵ : Path(τ, τ)

p : Path(τ, τ)
(Star)

p∗ : Path(τ, τ)

p : Path(τ, τ ′) q : Path(τ ′, τ ′′)
(Seq.)

p · q : Path(τ, τ ′′)

p : Path(τ, τ ′) q : Path(τ, τ ′)
(Alt.)

p + q : Path(τ, τ ′)

Example

type Unit = {};

type Head = { /* ... */ };

type List = Nil(Unit) + Cons(Cell);

type Cell = { head: Head, tail: List };

Example

▶ Head
Cons · head

▶ Spine
(Cons · tail)∗

▶ Elements
(Cons · tail)∗ · Cons · head

▶ Terminator
(Cons · tail)∗ · Nil

Example

▶ Head
Cons · head

▶ Spine
(Cons · tail)∗

▶ Elements
(Cons · tail)∗ · Cons · head

▶ Terminator
(Cons · tail)∗ · Nil

Example

▶ Head
Cons · head

▶ Spine
(Cons · tail)∗

▶ Elements
(Cons · tail)∗ · Cons · head

▶ Terminator
(Cons · tail)∗ · Nil

Example

▶ Head
Cons · head

▶ Spine
(Cons · tail)∗

▶ Elements
(Cons · tail)∗ · Cons · head

▶ Terminator
(Cons · tail)∗ · Nil

Example

▶ Head
Cons · head

▶ Spine
(Cons · tail)∗

▶ Elements
(Cons · tail)∗ · Cons · head

▶ Terminator
(Cons · tail)∗ · Nil

Zones

Jl |pK : Stack× Heap → P(Loc)

Zones

Jl |ϵK(σ, η) = {l}

Jl |αK(σ, η) =

{
∅ if τ ′ a value type

{πα(l)(σ, η)} otherwise

Jl |p + qK(σ, η) = Jl |pK(σ, η) ∪ Jl |qK(σ, η)

Jl |p · qK(σ, η) =
⋃

l ′∈Jl |pK(σ,η)

Jl ′|qK(σ, η)

Zones

Jl |p∗K(σ, η) =
⋃
i∈ω

Zi

where

Z0 = {l}

Zi+1 =
⋃
l ′∈Zi

Jl ′|pK(σ, η)

Access analysis (very vaguely)

// ... // {(y, F.p), ...}

let x = y.F; // {(x, p), ...}

// ...

Generating cleaning code

▶ At each program point we have the set of zones that may be
accessed

▶ Looking between program points, we’ll learn what we can
hope to deallocate

Generating cleaning code

▶ At each program point we have the set of zones that may be
accessed

▶ Looking between program points, we’ll learn what we can
hope to deallocate

Generating cleaning code

▶ At each program point we have the set of zones that may be
accessed

▶ Looking between program points, we’ll learn what we can
hope to deallocate

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:

▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need

▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:

▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set

▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked

▶ Clear the marks

Generating cleaning code

▶ At every program point, compute two sets:
▶ The matter set — everything we may still need
▶ The antimatter set — everything we definitely don’t need

▶ Generate code to:
▶ ‘Mark’ the matter set
▶ free() anything in the anti-matter set that isn’t marked
▶ Clear the marks

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do

▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work

▶ Aggregate work across program points to minimise context
switching

▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching

▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses

▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Generating cleaning code

▶ Various optimisations we can do
▶ Identify redundancy to minimise work
▶ Aggregate work across program points to minimise context

switching
▶ Improve accuracy of analyses
▶ ...

▶ I like to think of the whole technique as staging your tracing
collector

▶ But — there are some key issues to deal with!

Fixing fixpoints

▶ Fixpoints aren’t automatically reachable

▶ For any finite i ∈ ω

ϵ+ p + p · p + p · p · p + · · ·+ pi ̸= p∗

▶ People who know about this would say we’ve violated the
ascending chain condition

Fixing fixpoints

▶ Fixpoints aren’t automatically reachable

▶ For any finite i ∈ ω

ϵ+ p + p · p + p · p · p + · · ·+ pi ̸= p∗

▶ People who know about this would say we’ve violated the
ascending chain condition

Fixing fixpoints

▶ Fixpoints aren’t automatically reachable

▶ For any finite i ∈ ω

ϵ+ p + p · p + p · p · p + · · ·+ pi ̸= p∗

▶ People who know about this would say we’ve violated the
ascending chain condition

Fixing fixpoints

▶ Fixpoints aren’t automatically reachable

▶ For any finite i ∈ ω

ϵ+ p + p · p + p · p · p + · · ·+ pi ̸= p∗

▶ People who know about this would say we’ve violated the
ascending chain condition

Compact paths

⌊−⌋ : Path(τ, τ ′) → CPath(τ, τ ′)︸ ︷︷ ︸
Finite

▶ Every path has a corresponding DFA

▶ Idea: bound these automata by the type graph!

Compact paths

⌊−⌋ : Path(τ, τ ′) → CPath(τ, τ ′)︸ ︷︷ ︸
Finite

▶ Every path has a corresponding DFA

▶ Idea: bound these automata by the type graph!

Compact paths

⌊−⌋ : Path(τ, τ ′) → CPath(τ, τ ′)︸ ︷︷ ︸
Finite

▶ Every path has a corresponding DFA

▶ Idea: bound these automata by the type graph!

Compact paths

⌊−⌋ : Path(τ, τ ′) → CPath(τ, τ ′)︸ ︷︷ ︸
Finite

▶ Every path has a corresponding DFA

▶ Idea: bound these automata by the type graph!

Compact paths

(Cons · tail)∗

Unit List Cell Head

Cons

tail

headNil

Compact paths

(Cons · tail)∗

START

Unit (List) Cell Head

Cons

tail

headNil

Compact paths

⌊ϵ⌋ = ∅

⌊α⌋ = {τ α−→ τ ′}
⌊p · q⌋ = ⌊p⌋ ∪ ⌊q⌋
⌊p + q⌋ = ⌊p⌋ ∪ ⌊q⌋

⌊p∗⌋ = ⌊p⌋

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems

▶ Two types:
▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap

▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:

▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing

▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Dealing with aliasing

▶ Aliasing causes problems
▶ Two types:

▶ External — two distinct zones overlap
▶ Internal — multiple routes to a single block

▶ Have corresponding analyses:
▶ Shape — identifies potential external aliasing
▶ Share — identifies potential internal aliasing

▶ Interdependent! I refer to them collectively as implied access

Accuracy

▶ Analysing functions and methods in isolation isn’t accurate
enough for ASAP to perform well

▶ We need to consider the interactions between procedures

▶ Enter inter-procedural analysis

Accuracy

▶ Analysing functions and methods in isolation isn’t accurate
enough for ASAP to perform well

▶ We need to consider the interactions between procedures

▶ Enter inter-procedural analysis

Accuracy

▶ Analysing functions and methods in isolation isn’t accurate
enough for ASAP to perform well

▶ We need to consider the interactions between procedures

▶ Enter inter-procedural analysis

Accuracy

▶ Analysing functions and methods in isolation isn’t accurate
enough for ASAP to perform well

▶ We need to consider the interactions between procedures

▶ Enter inter-procedural analysis

Summaries & amalgamated call-contexts

▶ Summary — information passed from callee to caller

▶ Amalgamated call-context — information passed from callers
to callee

Summaries & amalgamated call-contexts

▶ Summary — information passed from callee to caller

▶ Amalgamated call-context — information passed from callers
to callee

Summaries & amalgamated call-contexts

▶ Summary — information passed from callee to caller

▶ Amalgamated call-context — information passed from callers
to callee

Summaries & amalgamated call-contexts

fn foo(a: u64, b: u64, c: u64) -> u64 {

// {a, b, c}

let w = a + b + c; // {w}

w // {}

}

Summaries & amalgamated call-contexts

fn foo(a: u64, b: u64, c: u64) -> u64 {

// {}

let w = a + b + c; // {}

w // {}

}

This generalises as before!

Summaries & amalgamated call-contexts

fn foo(a: u64, b: u64, c: u64) -> u64 {

// {}

let w = a + b + c; // {}

w // {}

}

This generalises as before!

Some thoughts

▶ Is ASAP best understood as a data-flow analysis or an effect
system?

▶ Can effect polymorphism help improve accuracy?

▶ Do we always need compact paths?

Some thoughts

▶ Is ASAP best understood as a data-flow analysis or an effect
system?

▶ Can effect polymorphism help improve accuracy?

▶ Do we always need compact paths?

Some thoughts

▶ Is ASAP best understood as a data-flow analysis or an effect
system?

▶ Can effect polymorphism help improve accuracy?

▶ Do we always need compact paths?

Some thoughts

▶ Is ASAP best understood as a data-flow analysis or an effect
system?

▶ Can effect polymorphism help improve accuracy?

▶ Do we always need compact paths?

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production

▶ But — early performance data is interesting!
▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly

▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries

▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:

▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics

▶ High performance scanning code
▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code

▶ Proper experimental platform

Conclusion & future work

▶ ASAP is a long way from production
▶ But — early performance data is interesting!

▶ Extremely cache friendly
▶ Small binaries
▶ Low memory footprint

▶ We still need:
▶ Better understanding of semantics
▶ High performance scanning code
▶ Proper experimental platform

References I

Nathan Corbyn, Practical static memory management, Tech.
report, University of Cambridge, 2020, BA Dissertation.

Raphaël L. Proust, ASAP: as static as possible memory
management, Tech. report, University of Cambridge, 2017,
PhD Thesis.

	Motivation
	Memory management à la C
	Automatic garbage collection
	Regions & ownership

	ASAP from space
	Liveness analysis
	Modelling the heap
	Naïve access analysis
	Generating cleaning code

	ASAP in practice
	Fixing fixpoints
	Dealing with aliasing
	Accuracy

	Conclusion & future work

